cvw/wally-pipelined/testbench/testbench-linux.sv
2021-10-04 18:23:31 -04:00

521 lines
22 KiB
Systemverilog

///////////////////////////////////////////
// testbench-linux.sv
//
// Written: nboorstin@g.hmc.edu 2021
// Modified:
//
// Purpose: Testbench for buildroot or busybear linux
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// When letting Wally go for it, let wally generate own interrupts
///////////////////////////////////////////
`include "wally-config.vh"
`define DEBUG_TRACE 0
// Debug Levels
// 0: don't check against QEMU
// 1: print disagreements with QEMU, but only halt on PCW disagreements
// 2: halt on any disagreement with QEMU except CSRs
// 3: halt on all disagreements with QEMU
// 4: print memory accesses whenever they happen
// 5: print everything
module testbench();
parameter waveOnICount = `BUSYBEAR*140000 + `BUILDROOT*3100000; // # of instructions at which to turn on waves in graphical sim
string ProgramAddrMapFile, ProgramLabelMapFile;
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////// DUT /////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
logic clk, reset;
logic [`AHBW-1:0] readDataExpected;
logic [31:0] HADDR;
logic [`AHBW-1:0] HWDATA;
logic HWRITE;
logic [2:0] HSIZE;
logic [2:0] HBURST;
logic [3:0] HPROT;
logic [1:0] HTRANS;
logic HMASTLOCK;
logic HCLK, HRESETn;
logic [`AHBW-1:0] HRDATAEXT;
logic HREADYEXT, HRESPEXT;
logic [31:0] GPIOPinsIn;
logic [31:0] GPIOPinsOut, GPIOPinsEn;
logic UARTSin, UARTSout;
assign GPIOPinsIn = 0;
assign UARTSin = 1;
wallypipelinedsoc dut(.*);
///////////////////////////////////////////////////////////////////////////////
//////////////////////// Signals & Shared Macros ///////////////////////////
//////////////////////// AKA stuff that comes first ///////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Sorry if these have gotten decontextualized.
// Verilog expects them to be defined before they are used.
// -------------------
// Signal Declarations
// -------------------
// Testbench Core
integer warningCount = 0;
integer errorCount = 0;
integer MIPexpected;
// P, Instr Checking
logic [`XLEN-1:0] PCW;
integer data_file_all;
string name;
// Write Back stage signals needed for trace compare, but don't actually
// exist in CPU.
logic [`XLEN-1:0] MemAdrW, WriteDataW;
// Write Back trace signals
logic checkInstrW;
//integer RegAdr;
integer fault;
logic TrapW;
// Signals used to parse the trace file.
logic checkInstrM;
integer matchCount;
string line;
logic [`XLEN-1:0] ExpectedPCM;
logic [31:0] ExpectedInstrM;
string textM;
string token;
string ExpectedTokens [31:0];
integer index;
integer StartIndex, EndIndex;
integer TokenIndex;
integer MarkerIndex;
integer NumCSRM;
// Memory stage expected values from trace
string RegWriteM;
integer ExpectedRegAdrM;
logic [`XLEN-1:0] ExpectedRegValueM;
string MemOpM;
logic [`XLEN-1:0] ExpectedMemAdrM, ExpectedMemReadDataM, ExpectedMemWriteDataM;
string ExpectedCSRArrayM[10:0];
logic [`XLEN-1:0] ExpectedCSRArrayValueM[10:0];
// Write back stage expected values from trace
logic [`XLEN-1:0] ExpectedPCW;
logic [31:0] ExpectedInstrW;
string textW;
string RegWriteW;
integer ExpectedRegAdrW;
logic [`XLEN-1:0] ExpectedRegValueW;
string MemOpW;
logic [`XLEN-1:0] ExpectedMemAdrW, ExpectedMemReadDataW, ExpectedMemWriteDataW;
integer NumCSRW;
string ExpectedCSRArrayW[10:0];
logic [`XLEN-1:0] ExpectedCSRArrayValueW[10:0];
logic [`XLEN-1:0] ExpectedIntType;
logic forcedInterrupt;
integer NumCSRMIndex;
integer NumCSRWIndex;
integer NumCSRPostWIndex;
logic [`XLEN-1:0] InstrCountW;
integer RequestDelayedMIP;
// ------
// Macros
// ------
`define CSRwarn(CSR) \
begin \
$display("CSR: %s = %016x, expected = %016x", ExpectedCSRArrayW[NumCSRPostWIndex], CSR, ExpectedCSRArrayValueW[NumCSRPostWIndex]); \
if (CSR != ExpectedCSRArrayValueW[NumCSRPostWIndex]) begin \
$display("%tns, %d instrs: CSR %s = %016x, does not equal expected value %016x", $time, InstrCountW, ExpectedCSRArrayW[NumCSRPostWIndex], CSR, ExpectedCSRArrayValueW[NumCSRPostWIndex]); \
if(`DEBUG_TRACE >= 3) fault = 1; \
end \
end
`define checkEQ(NAME, VAL, EXPECTED) \
if(VAL != EXPECTED) begin \
$display("%tns, %d instrs: %s %x differs from expected %x", $time, InstrCountW, NAME, VAL, EXPECTED); \
if ((NAME == "PCW") || (`DEBUG_TRACE >= 2)) fault = 1; \
end
initial begin
data_file_all = $fopen({`LINUX_TEST_VECTORS,"all.txt"}, "r");
InstrCountW = '0;
force dut.hart.priv.SwIntM = 0;
force dut.hart.priv.TimerIntM = 0;
force dut.hart.priv.ExtIntM = 0;
end
assign checkInstrM = dut.hart.ieu.InstrValidM & ~dut.hart.priv.trap.InstrPageFaultM & ~dut.hart.priv.trap.InterruptM & ~dut.hart.StallM;
assign checkInstrW = dut.hart.ieu.InstrValidW & ~dut.hart.StallW; // trapW will already be invalid in there was an InstrPageFault in the previous instruction.
// Additonal W stage registers
flopenrc #(`XLEN) MemAdrWReg(clk, reset, dut.hart.FlushW, ~dut.hart.StallW, dut.hart.ieu.dp.MemAdrM, MemAdrW);
flopenrc #(`XLEN) WriteDataWReg(clk, reset, dut.hart.FlushW, ~dut.hart.StallW, dut.hart.WriteDataM, WriteDataW);
flopenrc #(`XLEN) PCWReg(clk, reset, dut.hart.FlushW, ~dut.hart.ieu.dp.StallW, dut.hart.ifu.PCM, PCW);
flopenr #(1) TrapWReg(clk, reset, ~dut.hart.StallW, dut.hart.hzu.TrapM, TrapW);
// Because qemu does not match exactly to wally it is necessary to read the the
// trace in the memory stage and detect if anything in wally must be overwritten.
// This includes mtimer, interrupts, and various bits in mstatus and xtval.
// then on the next posedge the expected state is registered.
// on the next falling edge the expected state is compared to the wally state.
// step 0: read the expected state
always @(negedge clk) begin
// always check PC, instruction bits
if (checkInstrM) begin
// read 1 line of the trace file
matchCount = $fgets(line, data_file_all);
if(`DEBUG_TRACE >= 5) $display("Time %t, line %x", $time, line);
// extract PC, Instr
matchCount = $sscanf(line, "%x %x %s", ExpectedPCM, ExpectedInstrM, textM);
//$display("matchCount %d, PCM %x ExpectedInstrM %x textM %x", matchCount, ExpectedPCM, ExpectedInstrM, textM);
// for the life of me I cannot get any build in C or C++ string parsing functions/methods to work.
// strtok was the best idea but it cannot be used correctly as system verilog does not have null
// terminated strings.
// Just going to do this char by char.
StartIndex = 0;
TokenIndex = 0;
//$display("len = %d", line.len());
for(index = 0; index < line.len(); index++) begin
//$display("char = %s", line[index]);
if (line[index] == " " || line[index] == "\n") begin
EndIndex = index;
ExpectedTokens[TokenIndex] = line.substr(StartIndex, EndIndex-1);
//$display("In Tokenizer %s", line.substr(StartIndex, EndIndex-1));
StartIndex = EndIndex + 1;
TokenIndex++;
end
end
MarkerIndex = 3;
NumCSRM = 0;
MemOpM = "";
RegWriteM = "";
#2;
while(TokenIndex > MarkerIndex) begin
// parse the GPR
if (ExpectedTokens[MarkerIndex] == "GPR") begin
RegWriteM = ExpectedTokens[MarkerIndex];
matchCount = $sscanf(ExpectedTokens[MarkerIndex+1], "%d", ExpectedRegAdrM);
matchCount = $sscanf(ExpectedTokens[MarkerIndex+2], "%x", ExpectedRegValueM);
MarkerIndex += 3;
// parse memory address, read data, and/or write data
end else if(ExpectedTokens[MarkerIndex].substr(0, 2) == "Mem") begin
MemOpM = ExpectedTokens[MarkerIndex];
matchCount = $sscanf(ExpectedTokens[MarkerIndex+1], "%x", ExpectedMemAdrM);
matchCount = $sscanf(ExpectedTokens[MarkerIndex+2], "%x", ExpectedMemWriteDataM);
matchCount = $sscanf(ExpectedTokens[MarkerIndex+3], "%x", ExpectedMemReadDataM);
MarkerIndex += 4;
// parse CSRs, because there are 1 or more CSRs after the CSR token
// we check if the CSR token or the number of CSRs is greater than 0.
// if so then we want to parse for a CSR.
end else if(ExpectedTokens[MarkerIndex] == "CSR" || NumCSRM > 0) begin
if(ExpectedTokens[MarkerIndex] == "CSR") begin
// all additional CSR's won't have this token.
MarkerIndex++;
end
matchCount = $sscanf(ExpectedTokens[MarkerIndex], "%s", ExpectedCSRArrayM[NumCSRM]);
matchCount = $sscanf(ExpectedTokens[MarkerIndex+1], "%x", ExpectedCSRArrayValueM[NumCSRM]);
MarkerIndex += 2;
// match MIP to QEMU's because interrupts are imprecise
if(ExpectedCSRArrayM[NumCSRM].substr(0, 2) == "mip") begin
$display("%tn: ExpectedCSRArrayM[7] (MEPC) = %x",$time,ExpectedCSRArrayM[7]);
$display("%tn: ExpectedPCM = %x",$time,ExpectedPCM);
// if PC does not equal MEPC, request delayed MIP is True
if(ExpectedPCM != ExpectedCSRArrayM[7]) begin
RequestDelayedMIP = 1;
end else begin
$display("%tns: Updating MIP to %x",$time,ExpectedCSRArrayValueM[NumCSRM]);
MIPexpected = ExpectedCSRArrayValueM[NumCSRM];
force dut.hart.priv.csr.genblk1.csri.MIP_REGW = MIPexpected;
end
end
NumCSRM++;
end
end
// override on special conditions
if (ExpectedMemAdrM == 'h10000005) begin
//$display("%tns, %d instrs: Overwriting read data from CLINT.", $time, InstrCountW);
force dut.hart.ieu.dp.ReadDataM = ExpectedMemReadDataM;
end
if(textM.substr(0,5) == "rdtime") begin
//$display("%tns, %d instrs: Overwrite MTIME_CLINT on read of MTIME in memory stage.", $time, InstrCountW);
force dut.uncore.clint.clint.MTIME = ExpectedRegValueM;
end
end
end
// step 1: register expected state into the write back stage.
always @(posedge clk) begin
if (reset) begin
ExpectedPCW <= '0;
ExpectedInstrW <= '0;
textW <= "";
RegWriteW <= "";
ExpectedRegAdrW <= '0;
ExpectedRegValueW <= '0;
ExpectedMemAdrW <= '0;
MemOpW <= "";
ExpectedMemWriteDataW <= '0;
ExpectedMemReadDataW <= '0;
NumCSRW <= '0;
end else if(~dut.hart.StallW) begin
if(dut.hart.FlushW) begin
ExpectedPCW <= '0;
ExpectedInstrW <= '0;
textW <= "";
RegWriteW <= "";
ExpectedRegAdrW <= '0;
ExpectedRegValueW <= '0;
ExpectedMemAdrW <= '0;
MemOpW <= "";
ExpectedMemWriteDataW <= '0;
ExpectedMemReadDataW <= '0;
NumCSRW <= '0;
end else begin
ExpectedPCW <= ExpectedPCM;
ExpectedInstrW <= ExpectedInstrM;
textW <= textM;
RegWriteW <= RegWriteM;
ExpectedRegAdrW <= ExpectedRegAdrM;
ExpectedRegValueW <= ExpectedRegValueM;
ExpectedMemAdrW <= ExpectedMemAdrM;
MemOpW <= MemOpM;
ExpectedMemWriteDataW <= ExpectedMemWriteDataM;
ExpectedMemReadDataW <= ExpectedMemReadDataM;
NumCSRW <= NumCSRM;
for(NumCSRWIndex = 0; NumCSRWIndex < NumCSRM; NumCSRWIndex++) begin
ExpectedCSRArrayW[NumCSRWIndex] = ExpectedCSRArrayM[NumCSRWIndex];
ExpectedCSRArrayValueW[NumCSRWIndex] = ExpectedCSRArrayValueM[NumCSRWIndex];
end
end
#1;
// override on special conditions
if(~dut.hart.StallW) begin
if(textW.substr(0,5) == "rdtime") begin
//$display("%tns, %d instrs: Releasing force of MTIME_CLINT.", $time, InstrCountW);
release dut.uncore.clint.clint.MTIME;
end
if (ExpectedMemAdrM == 'h10000005) begin
//$display("%tns, %d instrs: releasing force of ReadDataM.", $time, InstrCountW);
release dut.hart.ieu.dp.ReadDataM;
end
end
end
end
// step2: make all checks in the write back stage.
always @(negedge clk) begin
if(RequestDelayedMIP) begin
$display("%tns: Updating MIP to %x",$time,ExpectedCSRArrayValueW[NumCSRM]);
MIPexpected = ExpectedCSRArrayValueW[NumCSRM];
force dut.hart.priv.csr.genblk1.csri.MIP_REGW = MIPexpected;
RequestDelayedMIP = 0;
end
// always check PC, instruction bits
if (checkInstrW) begin
InstrCountW += 1;
// turn on waves at certain point
if (InstrCountW == waveOnICount) $stop;
// print progress message
if (InstrCountW % 'd100000 == 0) $display("Reached %d instructions", InstrCountW);
fault = 0;
if (`DEBUG_TRACE >= 1) begin
`checkEQ("PCW",PCW,ExpectedPCW)
`checkEQ("InstrW",dut.hart.ifu.InstrW,ExpectedInstrW)
`checkEQ("Instr Count",dut.hart.priv.csr.genblk1.counters.genblk1.INSTRET_REGW,InstrCountW)
#2; // delay 2 ns.
if(`DEBUG_TRACE >= 5) begin
$display("%tns, %d instrs: Reg Write Address %02d ? expected value: %02d", $time, InstrCountW, dut.hart.ieu.dp.regf.a3, ExpectedRegAdrW);
$display("%tns, %d instrs: RF[%02d] %016x ? expected value: %016x", $time, InstrCountW, ExpectedRegAdrW, dut.hart.ieu.dp.regf.rf[ExpectedRegAdrW], ExpectedRegValueW);
end
if (RegWriteW == "GPR") begin
`checkEQ("Reg Write Address",dut.hart.ieu.dp.regf.a3,ExpectedRegAdrW)
$sprintf(name,"RF[%02d]",ExpectedRegAdrW);
`checkEQ(name, dut.hart.ieu.dp.regf.rf[ExpectedRegAdrW], ExpectedRegValueW)
end
if (MemOpW.substr(0,2) == "Mem") begin
if(`DEBUG_TRACE >= 4) $display("\tMemAdrW: %016x ? expected: %016x", MemAdrW, ExpectedMemAdrW);
`checkEQ("MemAdrW",MemAdrW,ExpectedMemAdrW)
if(MemOpW == "MemR" || MemOpW == "MemRW") begin
if(`DEBUG_TRACE >= 4) $display("\tReadDataW: %016x ? expected: %016x", dut.hart.ieu.dp.ReadDataW, ExpectedMemReadDataW);
`checkEQ("ReadDataW",dut.hart.ieu.dp.ReadDataW,ExpectedMemReadDataW)
end else if(ExpectedTokens[MarkerIndex] == "MemW" || ExpectedTokens[MarkerIndex] == "MemRW") begin
if(`DEBUG_TRACE >= 4) $display("\tWriteDataW: %016x ? expected: %016x", WriteDataW, ExpectedMemWriteDataW);
`checkEQ("WriteDataW",ExpectedMemWriteDataW,ExpectedMemWriteDataW)
end
end
// check csr
for(NumCSRPostWIndex = 0; NumCSRPostWIndex < NumCSRW; NumCSRPostWIndex++) begin
case(ExpectedCSRArrayW[NumCSRPostWIndex])
"mhartid": `CSRwarn(dut.hart.priv.csr.genblk1.csrm.MHARTID_REGW)
"mstatus": `CSRwarn(dut.hart.priv.csr.genblk1.csrm.MSTATUS_REGW)
"mtvec": `CSRwarn(dut.hart.priv.csr.genblk1.csrm.MTVEC_REGW)
"mip": `CSRwarn(dut.hart.priv.csr.genblk1.csrm.MIP_REGW)
"mie": `CSRwarn(dut.hart.priv.csr.genblk1.csrm.MIE_REGW)
"mideleg":`CSRwarn(dut.hart.priv.csr.genblk1.csrm.MIDELEG_REGW)
"medeleg": `CSRwarn(dut.hart.priv.csr.genblk1.csrm.MEDELEG_REGW)
"mepc": `CSRwarn(dut.hart.priv.csr.genblk1.csrm.MEPC_REGW)
"mtval": `CSRwarn(dut.hart.priv.csr.genblk1.csrm.MTVAL_REGW)
"sepc": `CSRwarn(dut.hart.priv.csr.genblk1.csrs.SEPC_REGW)
"scause": `CSRwarn(dut.hart.priv.csr.genblk1.csrs.genblk1.SCAUSE_REGW)
"stvec": `CSRwarn(dut.hart.priv.csr.genblk1.csrs.STVEC_REGW)
"stval": `CSRwarn(dut.hart.priv.csr.genblk1.csrs.genblk1.STVAL_REGW)
endcase
end
if (fault == 1) begin
errorCount +=1;
$display("processed %0d instructions with %0d warnings", InstrCountW, warningCount);
$stop;
end
end // if (`DEBUG_TRACE >= 1)
end // if (checkInstrW)
end // always @ (negedge clk)
// track the current function
FunctionName FunctionName(.reset(reset),
.clk(clk),
.ProgramAddrMapFile(ProgramAddrMapFile),
.ProgramLabelMapFile(ProgramLabelMapFile));
///////////////////////////////////////////////////////////////////////////////
//////////////////////////////// Testbench Core ///////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// --------------
// Initialization
// --------------
initial
begin
reset <= 1; # 22; reset <= 0;
end
// initial loading of memories
initial begin
$readmemh({`LINUX_TEST_VECTORS,"bootmem.txt"}, dut.uncore.bootdtim.bootdtim.RAM, 'h1000 >> 3);
$readmemh({`LINUX_TEST_VECTORS,"ram.txt"}, dut.uncore.dtim.RAM);
$readmemb(`TWO_BIT_PRELOAD, dut.hart.ifu.bpred.bpred.Predictor.DirPredictor.PHT.memory);
$readmemb(`BTB_PRELOAD, dut.hart.ifu.bpred.bpred.TargetPredictor.memory.memory);
ProgramAddrMapFile = {`LINUX_TEST_VECTORS,"vmlinux.objdump.addr"};
ProgramLabelMapFile = {`LINUX_TEST_VECTORS,"vmlinux.objdump.lab"};
end
// -------
// Running
// -------
always
begin
clk <= 1; # 5; clk <= 0; # 5;
end
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////// Miscellaneous ///////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Instr Opcode Tracking
// For waveview convenience
string InstrFName, InstrDName, InstrEName, InstrMName, InstrWName;
logic [31:0] InstrW;
instrTrackerTB it(clk, reset, dut.hart.ieu.dp.FlushE,
dut.hart.ifu.icache.FinalInstrRawF,
dut.hart.ifu.InstrD, dut.hart.ifu.InstrE,
dut.hart.ifu.InstrM, dut.hart.ifu.InstrW,
InstrFName, InstrDName, InstrEName, InstrMName, InstrWName);
// ------------------
// Address Translator
// ------------------
/**
* Walk the page table stored in dtim according to sv39 logic and translate a
* virtual address to a physical address.
*
* See section 4.3.2 of the RISC-V Privileged specification for a full
* explanation of the below algorithm.
*/
logic SvMode, PTE_R, PTE_X;
logic [`XLEN-1:0] SATP, PTE;
logic [55:0] BaseAdr, PAdr;
logic [8:0] VPN [2:0];
logic [11:0] Offset;
function logic [`XLEN-1:0] adrTranslator(
input logic [`XLEN-1:0] adrIn);
begin
int i;
// Grab the SATP register from privileged unit
SATP = dut.hart.priv.csr.SATP_REGW;
// Split the virtual address into page number segments and offset
VPN[2] = adrIn[38:30];
VPN[1] = adrIn[29:21];
VPN[0] = adrIn[20:12];
Offset = adrIn[11:0];
// We do not support sv48; only sv39
SvMode = SATP[63];
// Only perform translation if translation is on and the processor is not
// in machine mode
if (SvMode && (dut.hart.priv.PrivilegeModeW != `M_MODE)) begin
BaseAdr = SATP[43:0] << 12;
for (i = 2; i >= 0; i--) begin
PAdr = BaseAdr + (VPN[i] << 3);
// dtim.RAM is 64-bit addressed. PAdr specifies a byte. We right shift
// by 3 (the PTE size) to get the requested 64-bit PTE.
PTE = dut.uncore.dtim.RAM[PAdr >> 3];
PTE_R = PTE[1];
PTE_X = PTE[3];
if (PTE_R || PTE_X) begin
// Leaf page found
break;
end else begin
// Go to next level of table
BaseAdr = PTE[53:10] << 12;
end
end
// Determine which parts of the PTE page number to use based on the
// level of the page table we reached.
if (i == 2) begin
// Gigapage
assign adrTranslator = {8'b0, PTE[53:28], VPN[1], VPN[0], Offset};
end else if (i == 1) begin
// Megapage
assign adrTranslator = {8'b0, PTE[53:19], VPN[0], Offset};
end else begin
// Kilopage
assign adrTranslator = {8'b0, PTE[53:10], Offset};
end
end else begin
// Direct translation if address translation is not on
assign adrTranslator = adrIn;
end
end
endfunction
endmodule