cvw/src/uncore/uncore.sv
2023-03-24 18:55:43 -05:00

195 lines
8.9 KiB
Systemverilog

///////////////////////////////////////////
// uncore.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified: Ben Bracker 6 Mar 2021 to better fit AMBA 3 AHB-Lite spec
//
// Purpose: System-on-Chip components outside the core
// Memories, peripherals, external bus control
//
// Documentation: RISC-V System on Chip Design Chapter 15 (and Figure 6.20)
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module uncore (
// AHB Bus Interface
input logic HCLK, HRESETn,
input logic TIMECLK,
input logic [`PA_BITS-1:0] HADDR,
input logic [`AHBW-1:0] HWDATA,
input logic [`XLEN/8-1:0] HWSTRB,
input logic HWRITE,
input logic [2:0] HSIZE,
input logic [2:0] HBURST,
input logic [3:0] HPROT,
input logic [1:0] HTRANS,
input logic HMASTLOCK,
input logic [`AHBW-1:0] HRDATAEXT,
input logic HREADYEXT, HRESPEXT,
output logic [`AHBW-1:0] HRDATA,
output logic HREADY, HRESP,
output logic HSELEXT,
// peripheral pins
output logic MTimerInt, MSwInt, // Timer and software interrupts from CLINT
output logic MExtInt, SExtInt, // External interrupts from PLIC
output logic [63:0] MTIME_CLINT, // MTIME, from CLINT
input logic [31:0] GPIOIN, // GPIO pin input value
output logic [31:0] GPIOOUT, GPIOEN, // GPIO pin output value and enable
input logic UARTSin, // UART serial input
output logic UARTSout, // UART serial output
output logic SDCCmdOut, // SD Card command output
output logic SDCCmdOE, // SD Card command output enable
input logic SDCCmdIn, // SD Card command input
input logic [3:0] SDCDatIn, // SD Card data input
output logic SDCCLK // SD Card clock
);
logic [`XLEN-1:0] HREADRam, HREADSDC;
logic [10:0] HSELRegions;
logic HSELDTIM, HSELIROM, HSELRam, HSELCLINT, HSELPLIC, HSELGPIO, HSELUART, HSELSDC;
logic HSELDTIMD, HSELIROMD, HSELEXTD, HSELRamD, HSELCLINTD, HSELPLICD, HSELGPIOD, HSELUARTD, HSELSDCD;
logic HRESPRam, HRESPSDC;
logic HREADYRam, HRESPSDCD;
logic [`XLEN-1:0] HREADBootRom;
logic HSELBootRom, HSELBootRomD, HRESPBootRom, HREADYBootRom, HREADYSDC;
logic HSELNoneD;
logic UARTIntr,GPIOIntr;
logic SDCIntM;
logic PCLK, PRESETn, PWRITE, PENABLE;
logic [3:0] PSEL, PREADY;
logic [31:0] PADDR;
logic [`XLEN-1:0] PWDATA;
logic [`XLEN/8-1:0] PSTRB;
logic [3:0][`XLEN-1:0] PRDATA;
logic [`XLEN-1:0] HREADBRIDGE;
logic HRESPBRIDGE, HREADYBRIDGE, HSELBRIDGE, HSELBRIDGED;
// Determine which region of physical memory (if any) is being accessed
// Use a trimmed down portion of the PMA checker - only the address decoders
// Set access types to all 1 as don't cares because the MMU has already done access checking
adrdecs adrdecs(HADDR, 1'b1, 1'b1, 1'b1, HSIZE[1:0], HSELRegions);
// unswizzle HSEL signals
assign {HSELDTIM, HSELIROM, HSELEXT, HSELBootRom, HSELRam, HSELCLINT, HSELGPIO, HSELUART, HSELPLIC, HSELSDC} = HSELRegions[10:1];
// AHB -> APB bridge
ahbapbbridge #(4) ahbapbbridge (
.HCLK, .HRESETn, .HSEL({HSELUART, HSELPLIC, HSELCLINT, HSELGPIO}), .HADDR, .HWDATA, .HWSTRB, .HWRITE, .HTRANS, .HREADY,
.HRDATA(HREADBRIDGE), .HRESP(HRESPBRIDGE), .HREADYOUT(HREADYBRIDGE),
.PCLK, .PRESETn, .PSEL, .PWRITE, .PENABLE, .PADDR, .PWDATA, .PSTRB, .PREADY, .PRDATA);
assign HSELBRIDGE = HSELGPIO | HSELCLINT | HSELPLIC | HSELUART; // if any of the bridge signals are selected
// on-chip RAM
if (`UNCORE_RAM_SUPPORTED) begin : ram
ram_ahb #(.BASE(`UNCORE_RAM_BASE), .RANGE(`UNCORE_RAM_RANGE)) ram (
.HCLK, .HRESETn, .HSELRam, .HADDR, .HWRITE, .HREADY,
.HTRANS, .HWDATA, .HWSTRB, .HREADRam, .HRESPRam, .HREADYRam);
end
if (`BOOTROM_SUPPORTED) begin : bootrom
rom_ahb #(.BASE(`BOOTROM_BASE), .RANGE(`BOOTROM_RANGE))
bootrom(.HCLK, .HRESETn, .HSELRom(HSELBootRom), .HADDR, .HREADY, .HTRANS,
.HREADRom(HREADBootRom), .HRESPRom(HRESPBootRom), .HREADYRom(HREADYBootRom));
end
// memory-mapped I/O peripherals
if (`CLINT_SUPPORTED == 1) begin : clint
clint_apb clint(.PCLK, .PRESETn, .PSEL(PSEL[1]), .PADDR(PADDR[15:0]), .PWDATA, .PSTRB, .PWRITE, .PENABLE,
.PRDATA(PRDATA[1]), .PREADY(PREADY[1]), .MTIME(MTIME_CLINT), .MTimerInt, .MSwInt);
end else begin : clint
assign MTIME_CLINT = 0;
assign MTimerInt = 0; assign MSwInt = 0;
end
if (`PLIC_SUPPORTED == 1) begin : plic
plic_apb plic(.PCLK, .PRESETn, .PSEL(PSEL[2]), .PADDR(PADDR[27:0]), .PWDATA, .PSTRB, .PWRITE, .PENABLE,
.PRDATA(PRDATA[2]), .PREADY(PREADY[2]), .UARTIntr, .GPIOIntr, .MExtInt, .SExtInt);
end else begin : plic
assign MExtInt = 0;
assign SExtInt = 0;
end
if (`GPIO_SUPPORTED == 1) begin : gpio
gpio_apb gpio(
.PCLK, .PRESETn, .PSEL(PSEL[0]), .PADDR(PADDR[7:0]), .PWDATA, .PSTRB, .PWRITE, .PENABLE,
.PRDATA(PRDATA[0]), .PREADY(PREADY[0]),
.iof0(), .iof1(), .GPIOIN, .GPIOOUT, .GPIOEN, .GPIOIntr);
end else begin : gpio
assign GPIOOUT = 0; assign GPIOEN = 0; assign GPIOIntr = 0;
end
if (`UART_SUPPORTED == 1) begin : uart
uart_apb uart(
.PCLK, .PRESETn, .PSEL(PSEL[3]), .PADDR(PADDR[2:0]), .PWDATA, .PSTRB, .PWRITE, .PENABLE,
.PRDATA(PRDATA[3]), .PREADY(PREADY[3]),
.SIN(UARTSin), .DSRb(1'b1), .DCDb(1'b1), .CTSb(1'b0), .RIb(1'b1), // from E1A driver from RS232 interface
.SOUT(UARTSout), .RTSb(), .DTRb(), // to E1A driver to RS232 interface
.OUT1b(), .OUT2b(), .INTR(UARTIntr), .TXRDYb(), .RXRDYb()); // to CPU
end else begin : uart
assign UARTSout = 0; assign UARTIntr = 0;
end
if (`SDC_SUPPORTED == 1) begin : sdc
SDC SDC(.HCLK, .HRESETn, .HSELSDC, .HADDR(HADDR[4:0]), .HWRITE, .HREADY, .HTRANS,
.HWDATA, .HREADSDC, .HRESPSDC, .HREADYSDC,
// sdc interface
.SDCCmdOut, .SDCCmdIn, .SDCCmdOE, .SDCDatIn, .SDCCLK,
// interrupt to PLIC
.SDCIntM
);
end else begin : sdc
assign SDCCLK = 0;
assign SDCCmdOut = 0;
assign SDCCmdOE = 0;
end
// AHB Read Multiplexer
assign HRDATA = ({`XLEN{HSELRamD}} & HREADRam) |
({`XLEN{HSELEXTD}} & HRDATAEXT) |
({`XLEN{HSELBRIDGED}} & HREADBRIDGE) |
({`XLEN{HSELBootRomD}} & HREADBootRom) |
({`XLEN{HSELSDCD}} & HREADSDC);
assign HRESP = HSELRamD & HRESPRam |
HSELEXTD & HRESPEXT |
HSELBRIDGE & HRESPBRIDGE |
HSELBootRomD & HRESPBootRom |
HSELSDC & HRESPSDC;
assign HREADY = HSELRamD & HREADYRam |
HSELEXTD & HREADYEXT |
HSELBRIDGED & HREADYBRIDGE |
HSELBootRomD & HREADYBootRom |
HSELSDCD & HREADYSDC |
HSELNoneD; // don't lock up the bus if no region is being accessed
// Address Decoder Delay (figure 4-2 in spec)
// The select for HREADY needs to be based on the address phase address. If the device
// takes more than 1 cycle to repsond it needs to hold on to the old select until the
// device is ready. Hense this register must be selectively enabled by HREADY.
// However on reset None must be seleted.
flopenl #(11) hseldelayreg(HCLK, ~HRESETn, HREADY, HSELRegions, 11'b1,
{HSELDTIMD, HSELIROMD, HSELEXTD, HSELBootRomD, HSELRamD,
HSELCLINTD, HSELGPIOD, HSELUARTD, HSELPLICD, HSELSDCD, HSELNoneD});
flopenr #(1) hselbridgedelayreg(HCLK, ~HRESETn, HREADY, HSELBRIDGE, HSELBRIDGED);
endmodule