cvw/src/ieu/alu.sv

126 lines
6.8 KiB
Systemverilog

///////////////////////////////////////////
// alu.sv
//
// Written: David_Harris@hmc.edu, Sarah.Harris@unlv.edu, kekim@hmc.edu
// Created: 9 January 2021
// Modified: 3 March 2023
//
// Purpose: RISC-V Arithmetic/Logic Unit
//
// Documentation: RISC-V System on Chip Design
//
// A component of the CORE-V-WALLY configurable RISC-V project.
// https://github.com/openhwgroup/cvw
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
module alu import cvw::*; #(parameter cvw_t P) (
input logic [P.XLEN-1:0] A, B, // Operands
input logic W64, UW64, // W64/.uw-type instruction
input logic SubArith, // Subtraction or arithmetic shift
input logic [2:0] ALUSelect, // ALU mux select signal
input logic [3:0] BSelect, // Binary encoding of if it's a ZBA_ZBB_ZBC_ZBS instruction
input logic [3:0] ZBBSelect, // ZBB mux select signal
input logic [2:0] Funct3, // For BMU decoding
input logic [6:0] Funct7, // For ZKNE and ZKND computation
input logic [4:0] Rs2E, // For ZKNE and ZKND computation
input logic [2:0] BALUControl, // ALU Control signals for B instructions in Execute Stage
input logic BMUActive, // Bit manipulation instruction being executed
input logic [1:0] CZero, // {czero.nez, czero.eqz} instructions active
output logic [P.XLEN-1:0] ALUResult, // ALU result
output logic [P.XLEN-1:0] Sum); // Sum of operands
// CondInvB = ~B when subtracting, B otherwise. Shift = shift result. SLT/U = result of a slt/u instruction.
// FullResult = ALU result before adjusting for a RV64 w-suffix instruction.
logic [P.XLEN-1:0] CondMaskInvB, Shift, FullResult, PreALUResult; // Intermediate Signals
logic [P.XLEN-1:0] CondMaskB; // Result of B mask select mux
logic [P.XLEN-1:0] CondShiftA; // Result of A shifted select mux
logic [P.XLEN-1:0] ZeroCondMaskInvB; // B input to AND gate, accounting for czero.* instructions
logic [P.XLEN-1:0] AndResult; // AND result
logic Carry, Neg; // Flags: carry out, negative
logic LT, LTU; // Less than, Less than unsigned
logic Asign, Bsign; // Sign bits of A, B
// Addition
// CondMaskB is B for add/sub, or a masked version of B for certain bit manipulation instructions
// CondShiftA is A for add/sub or a shifted version of A for shift-and-add BMU instructions
assign CondMaskInvB = SubArith ? ~CondMaskB : CondMaskB;
assign {Carry, Sum} = CondShiftA + CondMaskInvB + {{(P.XLEN-1){1'b0}}, SubArith};
// Zicond block conditionally zeros B
if (P.ZICOND_SUPPORTED) begin: zicond
logic BZero;
assign BZero = (B == 0); // check if rs2 = 0
// Create a signal that is 0 when czero.* instruction should clear result
// If B = 0 for czero.eqz or if B != 0 for czero.nez
always_comb
case (CZero)
2'b01: ZeroCondMaskInvB = {P.XLEN{~BZero}}; // czero.eqz: kill if B = 0
2'b10: ZeroCondMaskInvB = {P.XLEN{BZero}}; // czero.nez: kill if B != 0
default: ZeroCondMaskInvB = CondMaskInvB; // otherwise normal behavior
endcase
end else assign ZeroCondMaskInvB = CondMaskInvB; // no masking if Zicond is not supported
// Shifts (configurable for rotation)
shifter #(P) sh(.A(CondShiftA), .Amt(B[P.LOG_XLEN-1:0]), .Right(Funct3[2]), .W64, .SubArith, .Y(Shift), .Rotate(BALUControl[2]));
// Condition code flags are based on subtraction output Sum = A-B.
// Overflow occurs when the numbers being subtracted have the opposite sign
// and the result has the opposite sign of A.
// LT is simplified from Overflow = Asign & Bsign & Asign & Neg; LT = Neg ^ Overflow
assign Neg = Sum[P.XLEN-1];
assign Asign = A[P.XLEN-1];
assign Bsign = B[P.XLEN-1];
assign LT = Asign & ~Bsign | Asign & Neg | ~Bsign & Neg;
assign LTU = ~Carry;
assign AndResult = A & ZeroCondMaskInvB;
// Select appropriate ALU Result
always_comb
case (ALUSelect)
3'b000: FullResult = Sum; // add or sub (including address generation)
3'b001: FullResult = Shift; // sll, sra, or srl
3'b010: FullResult = {{(P.XLEN-1){1'b0}}, LT}; // slt
3'b011: FullResult = {{(P.XLEN-1){1'b0}}, LTU}; // sltu
3'b100: FullResult = A ^ CondMaskInvB; // xor, xnor, binv
// 3'b101: FullResult = (P.ZBS_SUPPORTED) ? {{(P.XLEN-1){1'b0}},{|(A & CondMaskInvB)}} : Shift; // bext (or IEU shift when BMU not supported)
3'b101: FullResult = (P.ZBS_SUPPORTED) ? {{(P.XLEN-1){1'b0}},{|(AndResult)}} : Shift; // bext (or IEU shift when BMU not supported)
3'b110: FullResult = A | CondMaskInvB; // or, orn, bset
3'b111: FullResult = AndResult; // and, bclr, czero.*
endcase
// Support RV64I W-type addw/subw/addiw/shifts that discard upper 32 bits and sign-extend 32-bit result to 64 bits
if (P.XLEN == 64) assign PreALUResult = W64 ? {{32{FullResult[31]}}, FullResult[31:0]} : FullResult;
else assign PreALUResult = FullResult;
// Bit manipulation muxing
if (P.ZBC_SUPPORTED | P.ZBS_SUPPORTED | P.ZBA_SUPPORTED | P.ZBB_SUPPORTED |
P.ZBKB_SUPPORTED | P.ZBKC_SUPPORTED | P.ZBKX_SUPPORTED |
P.ZKND_SUPPORTED | P.ZKNE_SUPPORTED | P.ZKNH_SUPPORTED) begin : bitmanipalu
bitmanipalu #(P) balu(
.A, .B, .W64, .UW64, .BSelect, .ZBBSelect, .BMUActive,
.Funct3, .Funct7, .Rs2E, .LT,.LTU, .BALUControl, .PreALUResult, .FullResult,
.CondMaskB, .CondShiftA, .ALUResult);
end else begin
assign ALUResult = PreALUResult;
assign CondMaskB = B;
assign CondShiftA = A;
end
endmodule