mirror of
https://github.com/openhwgroup/cvw
synced 2025-01-24 21:44:29 +00:00
247 lines
8.1 KiB
Perl
Executable File
247 lines
8.1 KiB
Perl
Executable File
#!/bin/perl -W
|
|
|
|
###########################################
|
|
## libppa.pl
|
|
##
|
|
## Written: David_Harris@hmc.edu
|
|
## Created: 28 January 2023
|
|
##
|
|
## Purpose: Extract PPA information from Liberty files
|
|
## presently characterizes Skywater 90 and TSMC28hpc+
|
|
##
|
|
## The user will need to change $libpath to point to the desired library in your local installation
|
|
## and for TSMC change the $cellname to the actual name of the inverter.
|
|
##
|
|
## A component of the CORE-V-WALLY configurable RISC-V project.
|
|
##
|
|
## Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
|
|
##
|
|
## SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
|
|
##
|
|
## Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
|
|
## except in compliance with the License, or, at your option, the Apache License version 2.0. You
|
|
## may obtain a copy of the License at
|
|
##
|
|
## https:##solderpad.org/licenses/SHL-2.1/
|
|
##
|
|
## Unless required by applicable law or agreed to in writing, any work distributed under the
|
|
## License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
|
|
## either express or implied. See the License for the specific language governing permissions
|
|
## and limitations under the License.
|
|
################################################################################################
|
|
|
|
use strict;
|
|
use warnings;
|
|
|
|
# global variables for simplicity
|
|
my @index1; my @index2;
|
|
my @values;
|
|
my @cr; my @cf; my @rt; my @ft;
|
|
|
|
# cell and corners to analyze
|
|
my $libpath; my $libbase; my $cellname; my @corners;
|
|
|
|
# Sky90
|
|
$libpath ="/opt/riscv/cad/lib/sky90/sky90_sc/V1.7.4/lib";
|
|
$libbase = "scc9gena_";
|
|
$cellname = "scc9gena_inv_1";
|
|
@corners = ("tt_1.2v_25C", "tt_1.08v_25C", "tt_1.32v_25C", "tt_1.2v_-40C", "tt_1.2v_85C", "tt_1.2v_125C", "ss_1.2v_25C", "ss_1.08v_-40C", "ss_1.08v_25C", "ss_1.08v_125C", "ff_1.2v_25C", "ff_1.32v_-40C", "ff_1.32v_25C", "ff_1.32v_125C");
|
|
printf("Library $libbase Cell $cellname\n");
|
|
foreach my $corner (@corners) {
|
|
&analyzeCell($corner);
|
|
}
|
|
|
|
# TSMC
|
|
$libpath = "/proj/models/tsmc28/libraries/28nmtsmc/tcbn28hpcplusbwp30p140_190a/TSMCHOME/digital/Front_End/timing_power_noise/NLDM/tcbn28hpcplusbwp30p140_180a";
|
|
$libbase = "tcbn28hpcplusbwp30p140";
|
|
$cellname = "INVD1..."; // replace this with the full name of the library cell
|
|
@corners = ("tt0p9v25c", "tt0p8v25c", "tt1v25c", "tt0p9v85c", "ssg0p9vm40c", "ssg0p9v125c", "ssg0p81vm40c", "ssg0p81v125c", "ffg0p88vm40c", "ffg0p88v125c", "ffg0p99vm40c", "ffg0p99v125c");
|
|
printf("\nLibrary $libbase Cell $cellname\n");
|
|
foreach my $corner (@corners) {
|
|
&analyzeCell($corner);
|
|
}
|
|
|
|
#############
|
|
# subroutines
|
|
#############
|
|
|
|
sub analyzeCell {
|
|
my $corner = shift;
|
|
my $fname = $libpath."/".$libbase.$corner.".lib";
|
|
open (FILE, $fname) || die("Can't read $fname");
|
|
my $incell = 0;
|
|
my $inleakage = 0;
|
|
my $inpin = 0;
|
|
my $incellrise = 0;
|
|
my $incellfall = 0;
|
|
my $inrisetrans = 0;
|
|
my $infalltrans = 0;
|
|
my $inindex = 0;
|
|
my $invalues = 0;
|
|
my $searchstring = "cell (".$cellname.")";
|
|
my $area; my $leakage; my $cap;
|
|
while (<FILE>) {
|
|
if (index($_, $searchstring) != -1) { $incell = 1;}
|
|
elsif ($incell) {
|
|
if (/cell \(/) {
|
|
$incell = 0;
|
|
close(FILE);
|
|
last;
|
|
}
|
|
if (/area\s*:\s*(.*);/) { $area = $1; }
|
|
if (/cell_leakage_power\s*:\s*(.*);/) { $leakage = $1; $inleakage = 2; }
|
|
if ($inleakage == 0 && /leakage_power/) { $inleakage = 1; }
|
|
if ($inleakage == 1 && /value\s*:\s*(.*);/) {
|
|
$leakage = $1;
|
|
$inleakage = 2;
|
|
}
|
|
if ($inpin == 0 && /pin/) { $inpin = 1; }
|
|
if ($inpin == 1 && /\s+capacitance\s*:\s*(.*);/) {
|
|
$cap = $1;
|
|
$inpin = 2;
|
|
}
|
|
if ($inindex == 0 && /index_1/) { $inindex = 1; }
|
|
if ($inindex == 1) {
|
|
if (/index_1\s*\(\"(.*)\"\);/) { @index1 = split(/, /, $1); }
|
|
if (/index_2\s*\(\"(.*)\"\);/) { @index2 = split(/, /, $1); $inindex = 2; }
|
|
}
|
|
if ($incellrise == 0 && /cell_rise/) { $incellrise = 1; $invalues = 0;}
|
|
if ($incellfall == 0 && /cell_fall/) { $incellfall = 1; $invalues = 0; }
|
|
if ($inrisetrans == 0 && /rise_trans/) { $inrisetrans = 1; $invalues = 0; }
|
|
if ($infalltrans == 0 && /fall_trans/) { $infalltrans = 1; $invalues = 0; }
|
|
if ($incellrise == 1 || $incellfall == 1 || $inrisetrans == 1 || $infalltrans == 1) {
|
|
if (/values/) { $invalues = 1; @values = (); }
|
|
elsif ($invalues == 1) {
|
|
if (/\);/) {
|
|
$invalues = 2;
|
|
if ($incellrise == 1) { @cr = &parseVals(); $incellrise = 2; }
|
|
if ($incellfall == 1) { @cf = &parseVals(); $incellfall = 2; }
|
|
if ($inrisetrans == 1) { @rt = &parseVals(); $inrisetrans = 2; }
|
|
if ($infalltrans == 1) { @ft = &parseVals(); $infalltrans = 2; }
|
|
}
|
|
elsif (/\"(.*)\"/) { push(@values, $1); }
|
|
}
|
|
}
|
|
# print $_;
|
|
}
|
|
}
|
|
|
|
my $delay = &computeDelay($cap);
|
|
my $cornerr = sprintf("%20s", $corner);
|
|
my $delayr = sprintf("%2.1f", $delay*1000);
|
|
my $leakager = sprintf("%3.1f", $leakage);
|
|
|
|
print("$cornerr: Delay $delayr Leakage: $leakager capacitance: $cap\n");
|
|
#print("$cellname $corner: Area $area Leakage: $leakage capacitance: $cap delay $delay\n");
|
|
#print(" index1: @index1\n");
|
|
#print(" index2: @index2\n");
|
|
#print("Cell Rise\n"); printMatrix(\@cr);
|
|
#print("Cell Fall\n"); printMatrix(\@cf);
|
|
#print("Rise Trans\n"); printMatrix(\@rt);
|
|
#print("Fall Trans\n"); printMatrix(\@ft);
|
|
}
|
|
|
|
sub computeDelay {
|
|
# relies on cr, cf, rt, ft, index1, index2
|
|
# index1 for rows of matrix (different trans times, units of ns)
|
|
# index2 for cols of matrix (different load capacitances, units of pF)
|
|
|
|
# first, given true load, create a rise/fall delay and transition
|
|
# as a function of trans time, interpolated
|
|
my $cap = shift;
|
|
my $fo4cap = 4*$cap;
|
|
my @cri = &interp2(\@cr, $fo4cap);
|
|
my @cfi = &interp2(\@cf, $fo4cap);
|
|
my @rti = &interp2(\@rt, $fo4cap);
|
|
my @fti = &interp2(\@ft, $fo4cap);
|
|
|
|
# initially guess second smallest transition time
|
|
my $tt = $index1[1];
|
|
# assume falling input with this transition, compute rise delay & trans
|
|
my $cr0 = &interp1(\@cri, \@index1, $tt);
|
|
my $rt0 = &interp1(\@rti, \@index1, $tt);
|
|
# now assuming rising input with rt0, compute fall delay & trans
|
|
my $cf1 = &interp1(\@cfi, \@index1, $rt0);
|
|
my $ft1 = &interp1(\@fti, \@index1, $rt0);
|
|
# now assuming falling input with ft1, compute rise delay & trans
|
|
my $cr2 = &interp1(\@cri, \@index1, $ft1);
|
|
my $rt2 = &interp1(\@rti, \@index1, $ft1);
|
|
# now assuming rising input with rt2, compute fall delay & trans
|
|
my $cf3 = &interp1(\@cfi, \@index1, $rt2);
|
|
my $ft3 = &interp1(\@fti, \@index1, $rt2);
|
|
|
|
# delay is average of rising and falling
|
|
my $delay = ($cr2 + $cf3)/2;
|
|
return $delay;
|
|
|
|
# print("tt $tt cr0 $cr0 rt0 $rt0\n");
|
|
# print("cf1 $cf1 ft1 $ft1 cr2 $cr2 rt2 $rt2 cf3 $cf3 ft3 $ft3 delay $delay\n");
|
|
}
|
|
|
|
sub interp2 {
|
|
my $matref = shift;
|
|
my @matrix = @$matref;
|
|
my $fo4cap = shift;
|
|
my @interp = ();
|
|
|
|
my $i;
|
|
# interpolate row by row
|
|
for ($i=0; $i <= $#index1; $i++) {
|
|
my @row = @{$matrix[$i]};
|
|
#print ("Extracted row $i = @row\n");
|
|
$interp[$i] = &interp1(\@row, \@index2, $fo4cap);
|
|
}
|
|
return @interp;
|
|
}
|
|
|
|
sub interp1 {
|
|
my $vecref = shift;
|
|
my @vec = @$vecref;
|
|
my $indexref = shift;
|
|
my @index = @$indexref;
|
|
my $x = shift;
|
|
|
|
# find entry i containing the first index greater than x
|
|
my $i = 0;
|
|
while ($index[$i] < $x) {$i++}
|
|
my $start = $index[$i-1];
|
|
my $end = $index[$i];
|
|
my $fract = ($x-$start)/($end-$start);
|
|
my $interp = $vec[$i-1] + ($vec[$i] - $vec[$i-1])*$fract;
|
|
|
|
# print ("Interpolating $x as $interp from i $i start $start end $end based on index @index and vec @vec\n");
|
|
|
|
return $interp;
|
|
}
|
|
|
|
sub parseVals {
|
|
# relies on global variables @values, @index1, @index2
|
|
my @vals;
|
|
my $i; my $j;
|
|
for ($i=0; $i <= $#index1; $i++) {
|
|
my @row = split(/, /,$values[$i]);
|
|
for ($j = 0; $j <= $#index2; $j++) {
|
|
$vals[$i][$j] = $row[$j];
|
|
}
|
|
}
|
|
return @vals;
|
|
}
|
|
|
|
sub printMatrix {
|
|
my $mat = shift;
|
|
my @matrix = @$mat;
|
|
my $i; my $j;
|
|
for ($i=0; $i <= $#index1; $i++) {
|
|
for ($j = 0; $j <= $#index2; $j++) {
|
|
print($matrix[$i][$j]." ");
|
|
}
|
|
print("\n");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|