mirror of
				https://github.com/openhwgroup/cvw
				synced 2025-02-11 06:05:49 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			857 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			857 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /*============================================================================
 | |
| 
 | |
| This C source file is part of TestFloat, Release 3e, a package of programs for
 | |
| testing the correctness of floating-point arithmetic complying with the IEEE
 | |
| Standard for Floating-Point, by John R. Hauser.
 | |
| 
 | |
| Copyright 2011, 2012, 2013, 2014, 2017 The Regents of the University of
 | |
| California.  All rights reserved.
 | |
| 
 | |
| Redistribution and use in source and binary forms, with or without
 | |
| modification, are permitted provided that the following conditions are met:
 | |
| 
 | |
|  1. Redistributions of source code must retain the above copyright notice,
 | |
|     this list of conditions, and the following disclaimer.
 | |
| 
 | |
|  2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|     this list of conditions, and the following disclaimer in the documentation
 | |
|     and/or other materials provided with the distribution.
 | |
| 
 | |
|  3. Neither the name of the University nor the names of its contributors may
 | |
|     be used to endorse or promote products derived from this software without
 | |
|     specific prior written permission.
 | |
| 
 | |
| THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
 | |
| EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | |
| WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
 | |
| DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
 | |
| DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 | |
| (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | |
| LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 | |
| ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| =============================================================================*/
 | |
| 
 | |
| #include <stdbool.h>
 | |
| #include <stdint.h>
 | |
| #include <fenv.h>
 | |
| #include <math.h>
 | |
| #include "platform.h"
 | |
| #include "softfloat.h"
 | |
| #include "subjfloat_config.h"
 | |
| #include "subjfloat.h"
 | |
| 
 | |
| #pragma STDC FENV_ACCESS ON
 | |
| 
 | |
| void subjfloat_setRoundingMode( uint_fast8_t roundingMode )
 | |
| {
 | |
| 
 | |
|     fesetround(
 | |
|           (roundingMode == softfloat_round_near_even) ? FE_TONEAREST
 | |
|         : (roundingMode == softfloat_round_minMag)    ? FE_TOWARDZERO
 | |
|         : (roundingMode == softfloat_round_min)       ? FE_DOWNWARD
 | |
|         : FE_UPWARD
 | |
|     );
 | |
| 
 | |
| }
 | |
| 
 | |
| void subjfloat_setExtF80RoundingPrecision( uint_fast8_t roundingPrecision )
 | |
| {
 | |
| 
 | |
| }
 | |
| 
 | |
| uint_fast8_t subjfloat_clearExceptionFlags( void )
 | |
| {
 | |
|     int subjExceptionFlags;
 | |
|     uint_fast8_t exceptionFlags;
 | |
| 
 | |
|     subjExceptionFlags =
 | |
|         fetestexcept(
 | |
|             FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW | FE_INEXACT
 | |
|         );
 | |
|     feclearexcept(
 | |
|         FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW | FE_INEXACT );
 | |
|     exceptionFlags = 0;
 | |
|     if ( subjExceptionFlags & FE_INVALID ) {
 | |
|         exceptionFlags |= softfloat_flag_invalid;
 | |
|     }
 | |
|     if ( subjExceptionFlags & FE_DIVBYZERO ) {
 | |
|         exceptionFlags |= softfloat_flag_infinite;
 | |
|     }
 | |
|     if ( subjExceptionFlags & FE_OVERFLOW ) {
 | |
|         exceptionFlags |= softfloat_flag_overflow;
 | |
|     }
 | |
|     if ( subjExceptionFlags & FE_UNDERFLOW ) {
 | |
|         exceptionFlags |= softfloat_flag_underflow;
 | |
|     }
 | |
|     if ( subjExceptionFlags & FE_INEXACT ) {
 | |
|         exceptionFlags |= softfloat_flag_inexact;
 | |
|     }
 | |
|     return exceptionFlags;
 | |
| 
 | |
| }
 | |
| 
 | |
| union f32_f { float32_t f32; float f; };
 | |
| 
 | |
| float32_t subj_ui32_to_f32( uint32_t a )
 | |
| {
 | |
|     union f32_f uZ;
 | |
| 
 | |
|     uZ.f = a;
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| float32_t subj_ui64_to_f32( uint64_t a )
 | |
| {
 | |
|     union f32_f uZ;
 | |
| 
 | |
|     uZ.f = a;
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| float32_t subj_i32_to_f32( int32_t a )
 | |
| {
 | |
|     union f32_f uZ;
 | |
| 
 | |
|     uZ.f = a;
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| float32_t subj_i64_to_f32( int64_t a )
 | |
| {
 | |
|     union f32_f uZ;
 | |
| 
 | |
|     uZ.f = a;
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| uint_fast32_t subj_f32_to_ui32_rx_minMag( float32_t a )
 | |
| {
 | |
|     union f32_f uA;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     return (uint32_t) uA.f;
 | |
| 
 | |
| }
 | |
| 
 | |
| uint_fast64_t subj_f32_to_ui64_rx_minMag( float32_t a )
 | |
| {
 | |
|     union f32_f uA;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     return (uint64_t) uA.f;
 | |
| 
 | |
| }
 | |
| 
 | |
| int_fast32_t subj_f32_to_i32_rx_minMag( float32_t a )
 | |
| {
 | |
|     union f32_f uA;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     return (int32_t) uA.f;
 | |
| 
 | |
| }
 | |
| 
 | |
| int_fast64_t subj_f32_to_i64_rx_minMag( float32_t a )
 | |
| {
 | |
|     union f32_f uA;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     return (int64_t) uA.f;
 | |
| 
 | |
| }
 | |
| 
 | |
| float32_t subj_f32_add( float32_t a, float32_t b )
 | |
| {
 | |
|     union f32_f uA, uB, uZ;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     uB.f32 = b;
 | |
|     uZ.f = uA.f + uB.f;
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| float32_t subj_f32_sub( float32_t a, float32_t b )
 | |
| {
 | |
|     union f32_f uA, uB, uZ;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     uB.f32 = b;
 | |
|     uZ.f = uA.f - uB.f;
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| float32_t subj_f32_mul( float32_t a, float32_t b )
 | |
| {
 | |
|     union f32_f uA, uB, uZ;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     uB.f32 = b;
 | |
|     uZ.f = uA.f * uB.f;
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef __STDC_VERSION__
 | |
| #if 199901L <= __STDC_VERSION__
 | |
| 
 | |
| float32_t subj_f32_mulAdd( float32_t a, float32_t b, float32_t c )
 | |
| {
 | |
|     union f32_f uA, uB, uC, uZ;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     uB.f32 = b;
 | |
|     uC.f32 = c;
 | |
|     uZ.f = fmaf( uA.f, uB.f, uC.f );
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| float32_t subj_f32_div( float32_t a, float32_t b )
 | |
| {
 | |
|     union f32_f uA, uB, uZ;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     uB.f32 = b;
 | |
|     uZ.f = uA.f / uB.f;
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef __STDC_VERSION__
 | |
| #if 199901L <= __STDC_VERSION__
 | |
| 
 | |
| float32_t subj_f32_sqrt( float32_t a )
 | |
| {
 | |
|     union f32_f uA, uZ;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     uZ.f = sqrtf( uA.f );
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| bool subj_f32_eq( float32_t a, float32_t b )
 | |
| {
 | |
|     union f32_f uA, uB;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     uB.f32 = b;
 | |
|     return (uA.f == uB.f);
 | |
| 
 | |
| }
 | |
| 
 | |
| bool subj_f32_le( float32_t a, float32_t b )
 | |
| {
 | |
|     union f32_f uA, uB;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     uB.f32 = b;
 | |
|     return (uA.f <= uB.f);
 | |
| 
 | |
| }
 | |
| 
 | |
| bool subj_f32_lt( float32_t a, float32_t b )
 | |
| {
 | |
|     union f32_f uA, uB;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     uB.f32 = b;
 | |
|     return (uA.f < uB.f);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| #ifdef FLOAT64
 | |
| 
 | |
| union f64_d { float64_t f64; double d; };
 | |
| 
 | |
| float64_t subj_ui32_to_f64( uint32_t a )
 | |
| {
 | |
|     union f64_d uZ;
 | |
| 
 | |
|     uZ.d = a;
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| float64_t subj_ui64_to_f64( uint64_t a )
 | |
| {
 | |
|     union f64_d uZ;
 | |
| 
 | |
|     uZ.d = a;
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| float64_t subj_i32_to_f64( int32_t a )
 | |
| {
 | |
|     union f64_d uZ;
 | |
| 
 | |
|     uZ.d = a;
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| float64_t subj_i64_to_f64( int64_t a )
 | |
| {
 | |
|     union f64_d uZ;
 | |
| 
 | |
|     uZ.d = a;
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| float64_t subj_f32_to_f64( float32_t a )
 | |
| {
 | |
|     union f32_f uA;
 | |
|     union f64_d uZ;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     uZ.d = uA.f;
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| uint_fast32_t subj_f64_to_ui32_rx_minMag( float64_t a )
 | |
| {
 | |
|     union f64_d uA;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     return (uint32_t) uA.d;
 | |
| 
 | |
| }
 | |
| 
 | |
| uint_fast64_t subj_f64_to_ui64_rx_minMag( float64_t a )
 | |
| {
 | |
|     union f64_d uA;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     return (uint64_t) uA.d;
 | |
| 
 | |
| }
 | |
| 
 | |
| int_fast32_t subj_f64_to_i32_rx_minMag( float64_t a )
 | |
| {
 | |
|     union f64_d uA;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     return (int32_t) uA.d;
 | |
| 
 | |
| }
 | |
| 
 | |
| int_fast64_t subj_f64_to_i64_rx_minMag( float64_t a )
 | |
| {
 | |
|     union f64_d uA;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     return (int64_t) uA.d;
 | |
| 
 | |
| }
 | |
| 
 | |
| float32_t subj_f64_to_f32( float64_t a )
 | |
| {
 | |
|     union f64_d uA;
 | |
|     union f32_f uZ;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     uZ.f = uA.d;
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| float64_t subj_f64_add( float64_t a, float64_t b )
 | |
| {
 | |
|     union f64_d uA, uB, uZ;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     uB.f64 = b;
 | |
|     uZ.d = uA.d + uB.d;
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| float64_t subj_f64_sub( float64_t a, float64_t b )
 | |
| {
 | |
|     union f64_d uA, uB, uZ;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     uB.f64 = b;
 | |
|     uZ.d = uA.d - uB.d;
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| float64_t subj_f64_mul( float64_t a, float64_t b )
 | |
| {
 | |
|     union f64_d uA, uB, uZ;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     uB.f64 = b;
 | |
|     uZ.d = uA.d * uB.d;
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef __STDC_VERSION__
 | |
| #if 199901L <= __STDC_VERSION__
 | |
| 
 | |
| float64_t subj_f64_mulAdd( float64_t a, float64_t b, float64_t c )
 | |
| {
 | |
|     union f64_d uA, uB, uC, uZ;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     uB.f64 = b;
 | |
|     uC.f64 = c;
 | |
|     uZ.d = fma( uA.d, uB.d, uC.d );
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| float64_t subj_f64_div( float64_t a, float64_t b )
 | |
| {
 | |
|     union f64_d uA, uB, uZ;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     uB.f64 = b;
 | |
|     uZ.d = uA.d / uB.d;
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| float64_t subj_f64_sqrt( float64_t a )
 | |
| {
 | |
|     union f64_d uA, uZ;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     uZ.d = sqrt( uA.d );
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| bool subj_f64_eq( float64_t a, float64_t b )
 | |
| {
 | |
|     union f64_d uA, uB;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     uB.f64 = b;
 | |
|     return (uA.d == uB.d);
 | |
| 
 | |
| }
 | |
| 
 | |
| bool subj_f64_le( float64_t a, float64_t b )
 | |
| {
 | |
|     union f64_d uA, uB;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     uB.f64 = b;
 | |
|     return (uA.d <= uB.d);
 | |
| 
 | |
| }
 | |
| 
 | |
| bool subj_f64_lt( float64_t a, float64_t b )
 | |
| {
 | |
|     union f64_d uA, uB;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     uB.f64 = b;
 | |
|     return (uA.d < uB.d);
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| #if defined EXTFLOAT80 && defined LONG_DOUBLE_IS_EXTFLOAT80
 | |
| 
 | |
| void subj_ui32_to_extF80M( uint32_t a, extFloat80_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) = a;
 | |
| 
 | |
| }
 | |
| 
 | |
| void subj_ui64_to_extF80M( uint64_t a, extFloat80_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) = a;
 | |
| 
 | |
| }
 | |
| 
 | |
| void subj_i32_to_extF80M( int32_t a, extFloat80_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) = a;
 | |
| 
 | |
| }
 | |
| 
 | |
| void subj_i64_to_extF80M( int64_t a, extFloat80_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) = a;
 | |
| 
 | |
| }
 | |
| 
 | |
| void subj_f32_to_extF80M( float32_t a, extFloat80_t *zPtr )
 | |
| {
 | |
|     union f32_f uA;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     *((long double *) zPtr) = uA.f;
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOAT64
 | |
| 
 | |
| void subj_f64_to_extF80M( float64_t a, extFloat80_t *zPtr )
 | |
| {
 | |
|     union f64_d uA;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     *((long double *) zPtr) = uA.d;
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| uint_fast32_t subj_extF80M_to_ui32_rx_minMag( const extFloat80_t *aPtr )
 | |
| {
 | |
| 
 | |
|     return *((const long double *) aPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| uint_fast64_t subj_extF80M_to_ui64_rx_minMag( const extFloat80_t *aPtr )
 | |
| {
 | |
| 
 | |
|     return *((const long double *) aPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| int_fast32_t subj_extF80M_to_i32_rx_minMag( const extFloat80_t *aPtr )
 | |
| {
 | |
| 
 | |
|     return *((const long double *) aPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| int_fast64_t subj_extF80M_to_i64_rx_minMag( const extFloat80_t *aPtr )
 | |
| {
 | |
| 
 | |
|     return *((const long double *) aPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| float32_t subj_extF80M_to_f32( const extFloat80_t *aPtr )
 | |
| {
 | |
|     union f32_f uZ;
 | |
| 
 | |
|     uZ.f = *((const long double *) aPtr);
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOAT64
 | |
| 
 | |
| float64_t subj_extF80M_to_f64( const extFloat80_t *aPtr )
 | |
| {
 | |
|     union f64_d uZ;
 | |
| 
 | |
|     uZ.d = *((const long double *) aPtr);
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void
 | |
|  subj_extF80M_add(
 | |
|      const extFloat80_t *aPtr, const extFloat80_t *bPtr, extFloat80_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) =
 | |
|         *((const long double *) aPtr) + *((const long double *) bPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| void
 | |
|  subj_extF80M_sub(
 | |
|      const extFloat80_t *aPtr, const extFloat80_t *bPtr, extFloat80_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) =
 | |
|         *((const long double *) aPtr) - *((const long double *) bPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| void
 | |
|  subj_extF80M_mul(
 | |
|      const extFloat80_t *aPtr, const extFloat80_t *bPtr, extFloat80_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) =
 | |
|         *((const long double *) aPtr) * *((const long double *) bPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| void
 | |
|  subj_extF80M_div(
 | |
|      const extFloat80_t *aPtr, const extFloat80_t *bPtr, extFloat80_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) =
 | |
|         *((const long double *) aPtr) / *((const long double *) bPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| bool subj_extF80M_eq( const extFloat80_t *aPtr, const extFloat80_t *bPtr )
 | |
| {
 | |
| 
 | |
|     return (*((const long double *) aPtr) == *((const long double *) bPtr));
 | |
| 
 | |
| }
 | |
| 
 | |
| bool subj_extF80M_le( const extFloat80_t *aPtr, const extFloat80_t *bPtr )
 | |
| {
 | |
| 
 | |
|     return (*((const long double *) aPtr) <= *((const long double *) bPtr));
 | |
| 
 | |
| }
 | |
| 
 | |
| bool subj_extF80M_lt( const extFloat80_t *aPtr, const extFloat80_t *bPtr )
 | |
| {
 | |
| 
 | |
|     return (*((const long double *) aPtr) < *((const long double *) bPtr));
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| #if defined FLOAT128 && defined LONG_DOUBLE_IS_FLOAT128
 | |
| 
 | |
| void subj_ui32_to_f128M( uint32_t a, float128_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) = a;
 | |
| 
 | |
| }
 | |
| 
 | |
| void subj_ui64_to_f128M( uint64_t a, float128_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) = a;
 | |
| 
 | |
| }
 | |
| 
 | |
| void subj_i32_to_f128M( int32_t a, float128_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) = a;
 | |
| 
 | |
| }
 | |
| 
 | |
| void subj_i64_to_f128M( int64_t a, float128_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) = a;
 | |
| 
 | |
| }
 | |
| 
 | |
| void subj_f32_to_f128M( float32_t a, float128_t *zPtr )
 | |
| {
 | |
|     union f32_f uA;
 | |
| 
 | |
|     uA.f32 = a;
 | |
|     *((long double *) zPtr) = uA.f;
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOAT64
 | |
| 
 | |
| void subj_f64_to_f128M( float64_t a, float128_t *zPtr )
 | |
| {
 | |
|     union f64_d uA;
 | |
| 
 | |
|     uA.f64 = a;
 | |
|     *((long double *) zPtr) = uA.d;
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| uint_fast32_t subj_f128M_to_ui32_rx_minMag( const float128_t *aPtr )
 | |
| {
 | |
| 
 | |
|     return *((const long double *) aPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| uint_fast64_t subj_f128M_to_ui64_rx_minMag( const float128_t *aPtr )
 | |
| {
 | |
| 
 | |
|     return *((const long double *) aPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| int_fast32_t subj_f128M_to_i32_rx_minMag( const float128_t *aPtr )
 | |
| {
 | |
| 
 | |
|     return *((const long double *) aPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| int_fast64_t subj_f128M_to_i64_rx_minMag( const float128_t *aPtr )
 | |
| {
 | |
| 
 | |
|     return *((const long double *) aPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| float32_t subj_f128M_to_f32( const float128_t *aPtr )
 | |
| {
 | |
|     union f32_f uZ;
 | |
| 
 | |
|     uZ.f = *((const long double *) aPtr);
 | |
|     return uZ.f32;
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOAT64
 | |
| 
 | |
| float64_t subj_f128M_to_f64( const float128_t *aPtr )
 | |
| {
 | |
|     union f64_d uZ;
 | |
| 
 | |
|     uZ.d = *((const long double *) aPtr);
 | |
|     return uZ.f64;
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void
 | |
|  subj_f128M_add(
 | |
|      const float128_t *aPtr, const float128_t *bPtr, float128_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) =
 | |
|         *((const long double *) aPtr) + *((const long double *) bPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| void
 | |
|  subj_f128M_sub(
 | |
|      const float128_t *aPtr, const float128_t *bPtr, float128_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) =
 | |
|         *((const long double *) aPtr) - *((const long double *) bPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| void
 | |
|  subj_f128M_mul(
 | |
|      const float128_t *aPtr, const float128_t *bPtr, float128_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) =
 | |
|         *((const long double *) aPtr) * *((const long double *) bPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef __STDC_VERSION__
 | |
| #if 199901L <= __STDC_VERSION__
 | |
| 
 | |
| void
 | |
|  subj_f128M_mulAdd(
 | |
|      const float128_t *aPtr,
 | |
|      const float128_t *bPtr,
 | |
|      const float128_t *cPtr,
 | |
|      float128_t *zPtr
 | |
|  )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) =
 | |
|         fmal(
 | |
|             *((const long double *) aPtr),
 | |
|             *((const long double *) bPtr),
 | |
|             *((const long double *) cPtr)
 | |
|         );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| void
 | |
|  subj_f128M_div(
 | |
|      const float128_t *aPtr, const float128_t *bPtr, float128_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) =
 | |
|         *((const long double *) aPtr) / *((const long double *) bPtr);
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef __STDC_VERSION__
 | |
| #if 199901L <= __STDC_VERSION__
 | |
| 
 | |
| void subj_f128M_sqrt( const float128_t *aPtr, float128_t *zPtr )
 | |
| {
 | |
| 
 | |
|     *((long double *) zPtr) = sqrtl( *((const long double *) aPtr) );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| bool subj_f128M_eq( const float128_t *aPtr, const float128_t *bPtr )
 | |
| {
 | |
| 
 | |
|     return (*((const long double *) aPtr) == *((const long double *) bPtr));
 | |
| 
 | |
| }
 | |
| 
 | |
| bool subj_f128M_le( const float128_t *aPtr, const float128_t *bPtr )
 | |
| {
 | |
| 
 | |
|     return (*((const long double *) aPtr) <= *((const long double *) bPtr));
 | |
| 
 | |
| }
 | |
| 
 | |
| bool subj_f128M_lt( const float128_t *aPtr, const float128_t *bPtr )
 | |
| {
 | |
| 
 | |
|     return (*((const long double *) aPtr) < *((const long double *) bPtr));
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 |