cvw/src/fpu/fdivsqrt/fdivsqrtpostproc.sv

137 lines
5.5 KiB
Systemverilog

///////////////////////////////////////////
// fdivsqrtpostproc.sv
//
// Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu
// Modified:13 January 2022
//
// Purpose: Divide/Square root postprocessing
//
// Documentation: RISC-V System on Chip Design Chapter 13
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module fdivsqrtpostproc(
input logic clk, reset,
input logic StallM,
input logic [`DIVb+3:0] WS, WC,
input logic [`DIVb+3:0] D,
input logic [`DIVb:0] FirstU, FirstUM,
input logic [`DIVb+1:0] FirstC,
input logic SqrtE,
input logic Firstun, SqrtM, SpecialCaseM, NegQuotM,
input logic [`XLEN-1:0] AM,
input logic RemOpM, ALTBM, BZeroM, AsM, W64M,
input logic [`DIVBLEN:0] nM, mM,
output logic [`DIVb:0] QmM,
output logic WZeroE,
output logic DivStickyM,
output logic [`XLEN-1:0] FIntDivResultM
);
logic [`DIVb+3:0] W, Sum;
logic [`DIVb:0] PreQmM;
logic NegStickyM;
logic weq0E, WZeroM;
logic [`XLEN-1:0] IntDivResultM;
//////////////////////////
// Execute Stage: Detect early termination for an exact result
//////////////////////////
// check for early termination on an exact result.
aplusbeq0 #(`DIVb+4) wspluswceq0(WS, WC, weq0E);
if (`RADIX == 2) begin: R2EarlyTerm
logic [`DIVb+3:0] FZeroE, FZeroSqrtE, FZeroDivE;
logic [`DIVb+2:0] FirstK;
logic wfeq0E;
logic [`DIVb+3:0] WCF, WSF;
assign FirstK = ({1'b1, FirstC} & ~({1'b1, FirstC} << 1));
assign FZeroSqrtE = {FirstUM[`DIVb], FirstUM, 2'b0} | {FirstK,1'b0}; // F for square root
assign FZeroDivE = D << 1; // F for divide
mux2 #(`DIVb+4) fzeromux(FZeroDivE, FZeroSqrtE, SqrtE, FZeroE);
csa #(`DIVb+4) fadd(WS, WC, FZeroE, 1'b0, WSF, WCF); // compute {WCF, WSF} = {WS + WC + FZero};
aplusbeq0 #(`DIVb+4) wcfpluswsfeq0(WCF, WSF, wfeq0E);
assign WZeroE = weq0E|(wfeq0E & Firstun);
end else begin
assign WZeroE = weq0E;
end
//////////////////////////
// E/M Pipeline register
//////////////////////////
flopenr #(1) WZeroMReg(clk, reset, ~StallM, WZeroE, WZeroM);
//////////////////////////
// Memory Stage: Postprocessing
//////////////////////////
// If the result is not exact, the sticky should be set
assign DivStickyM = ~WZeroM & ~(SpecialCaseM & SqrtM); // ***unsure why SpecialCaseM has to be gated by SqrtM, but otherwise fails regression on divide
// Determine if sticky bit is negative // *** look for ways to optimize this. Shift shouldn't be needed.
assign Sum = WC + WS;
assign NegStickyM = Sum[`DIVb+3];
mux2 #(`DIVb+1) preqmmux(FirstU, FirstUM, NegStickyM, PreQmM); // Select U or U-1 depending on negative sticky bit
mux2 #(`DIVb+1) qmmux(PreQmM, (PreQmM << 1), SqrtM, QmM);
// Integer quotient or remainder correctoin, normalization, and special cases
if (`IDIV_ON_FPU) begin:intpostproc // Int supported
logic [`DIVBLEN:0] NormShiftM;
logic [`DIVb+3:0] UnsignedQuotM, NormRemM, NormRemDM, NormQuotM;
logic signed [`DIVb+3:0] PreResultM, PreIntResultM;
assign W = $signed(Sum) >>> `LOGR;
assign UnsignedQuotM = {3'b000, PreQmM};
// Integer remainder: sticky and sign correction muxes
mux2 #(`DIVb+4) normremdmux(W, W+D, NegStickyM, NormRemDM);
mux2 #(`DIVb+4) normremsmux(NormRemDM, -NormRemDM, AsM, NormRemM);
mux2 #(`DIVb+4) quotresmux(UnsignedQuotM, -UnsignedQuotM, NegQuotM, NormQuotM);
// Select quotient or remainder and do normalization shift
mux2 #(`DIVBLEN+1) normshiftmux(((`DIVBLEN+1)'(`DIVb) - (nM * (`DIVBLEN+1)'(`LOGR))), (mM + (`DIVBLEN+1)'(`DIVa)), RemOpM, NormShiftM);
mux2 #(`DIVb+4) presresultmux(NormQuotM, NormRemM, RemOpM, PreResultM);
assign PreIntResultM = $signed(PreResultM >>> NormShiftM);
// special case logic
// terminates immediately when B is Zero (div 0) or |A| has more leading 0s than |B|
always_comb
if (BZeroM) begin // Divide by zero
if (RemOpM) IntDivResultM = AM;
else IntDivResultM = {(`XLEN){1'b1}};
end else if (ALTBM) begin // Numerator is zero
if (RemOpM) IntDivResultM = AM;
else IntDivResultM = '0;
end else IntDivResultM = PreIntResultM[`XLEN-1:0];
// sign extend result for W64
if (`XLEN==64) begin
mux2 #(64) resmux(IntDivResultM[`XLEN-1:0],
{{(`XLEN-32){IntDivResultM[31]}}, IntDivResultM[31:0]}, // Sign extending in case of W64
W64M, FIntDivResultM);
end else
assign FIntDivResultM = IntDivResultM[`XLEN-1:0];
end
endmodule