cvw/pipelined/src/mmu/mmu.sv
2022-02-03 01:08:34 +00:00

167 lines
7.4 KiB
Systemverilog

///////////////////////////////////////////
// mmu.sv
//
// Written: david_harris@hmc.edu and kmacsaigoren@hmc.edu 4 June 2021
// Modified:
//
// Purpose: Memory management unit, including TLB, PMA, PMP
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module mmu #(parameter TLB_ENTRIES = 8, // number of TLB Entries
parameter IMMU = 0) (
input logic clk, reset,
// Current value of satp CSR (from privileged unit)
input logic [`XLEN-1:0] SATP_REGW,
input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV,
input logic [1:0] STATUS_MPP,
// Current privilege level of the processeor
input logic [1:0] PrivilegeModeW,
// 00 - TLB is not being accessed
// 1x - TLB is accessed for a read (or an instruction)
// x1 - TLB is accessed for a write
// 11 - TLB is accessed for both read and write
input logic DisableTranslation,
// VAdr goes to the TLB only. Virtual if the TLB is active.
// PAdr goes to address mux bypassing the TLB. PAdr used when there is no translation.
// Comes from either the program address (instruction address or load/store address)
// or from the hardware pagetable walker.
// PAdr is intended to used as a phsycial address. Discarded by the address mux when translation is
// performed.
// PhysicalAddress is selected to be PAdr when no translation or the translated VAdr (TLBPAdr)
// when there is translation.
input logic [`PA_BITS-1:0] PAdr, // *** consider renaming this.
input logic [`XLEN-1:0] VAdr,
input logic [1:0] Size, // 00 = 8 bits, 01 = 16 bits, 10 = 32 bits , 11 = 64 bits
// Controls for writing a new entry to the TLB
input logic [`XLEN-1:0] PTE,
input logic [1:0] PageTypeWriteVal,
input logic TLBWrite,
// Invalidate all TLB entries
input logic TLBFlush,
// Physical address outputs
output logic [`PA_BITS-1:0] PhysicalAddress,
output logic TLBMiss,
output logic Cacheable, Idempotent, AtomicAllowed,
// Faults
output logic InstrAccessFaultF, LoadAccessFaultM, StoreAmoAccessFaultM,
output logic InstrPageFaultF, LoadPageFaultM, StoreAmoPageFaultM,
output logic LoadMisalignedFaultM, StoreAmoMisalignedFaultM,
// PMA checker signals
input logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM,
input var logic [7:0] PMPCFG_ARRAY_REGW[`PMP_ENTRIES-1:0],
input var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [`PMP_ENTRIES-1:0]
);
logic [`PA_BITS-1:0] TLBPAdr;
// Translation lookaside buffer
logic PMAInstrAccessFaultF, PMPInstrAccessFaultF;
logic PMALoadAccessFaultM, PMPLoadAccessFaultM;
logic PMAStoreAmoAccessFaultM, PMPStoreAmoAccessFaultM;
logic DataMisalignedM;
logic Translate;
logic TLBHit;
logic TLBPageFault;
// only instantiate TLB if Virtual Memory is supported
if (`VIRTMEM_SUPPORTED) begin:tlb
logic ReadAccess, WriteAccess;
assign ReadAccess = ExecuteAccessF | ReadAccessM; // execute also acts as a TLB read. Execute and Read are never active for the same MMU, so safe to mix pipestages
assign WriteAccess = WriteAccessM;
tlb #(.TLB_ENTRIES(TLB_ENTRIES), .ITLB(IMMU))
tlb(.clk, .reset,
.SATP_MODE(SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS]),
.SATP_ASID(SATP_REGW[`ASID_BASE+`ASID_BITS-1:`ASID_BASE]),
.VAdr, .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .ReadAccess, .WriteAccess,
.DisableTranslation, .PTE, .PageTypeWriteVal,
.TLBWrite, .TLBFlush, .TLBPAdr, .TLBMiss, .TLBHit,
.Translate, .TLBPageFault);
end else begin:tlb// just pass address through as physical
assign Translate = 0;
assign TLBMiss = 0;
assign TLBHit = 1; // *** is this necessary
assign TLBPageFault = 0;
end
// If translation is occuring, select translated physical address from TLB
// the lower 12 bits are the page offset. These are never changed from the orginal
// non translated address.
//mux2 #(`PA_BITS) addressmux(PAdr, TLBPAdr, Translate, PhysicalAddress);
mux2 #(`PA_BITS-12) addressmux(PAdr[`PA_BITS-1:12], TLBPAdr[`PA_BITS-1:12], Translate, PhysicalAddress[`PA_BITS-1:12]);
assign PhysicalAddress[11:0] = PAdr[11:0];
///////////////////////////////////////////
// Check physical memory accesses
///////////////////////////////////////////
pmachecker pmachecker(.PhysicalAddress, .Size,
.AtomicAccessM, .ExecuteAccessF, .WriteAccessM, .ReadAccessM,
.Cacheable, .Idempotent, .AtomicAllowed,
.PMAInstrAccessFaultF, .PMALoadAccessFaultM, .PMAStoreAmoAccessFaultM);
pmpchecker pmpchecker(.PhysicalAddress, .PrivilegeModeW,
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.ExecuteAccessF, .WriteAccessM, .ReadAccessM,
.PMPInstrAccessFaultF, .PMPLoadAccessFaultM, .PMPStoreAmoAccessFaultM);
// If TLB miss and translating we want to not have faults from the PMA and PMP checkers.
// assign SquashBusAccess = PMASquashBusAccess | PMPSquashBusAccess;
assign InstrAccessFaultF = (PMAInstrAccessFaultF | PMPInstrAccessFaultF) & ~(Translate & ~TLBHit);
assign LoadAccessFaultM = (PMALoadAccessFaultM | PMPLoadAccessFaultM) & ~(Translate & ~TLBHit);
assign StoreAmoAccessFaultM = (PMAStoreAmoAccessFaultM | PMPStoreAmoAccessFaultM) & ~(Translate & ~TLBHit);
always_comb
case(Size[1:0])
2'b00: DataMisalignedM = 0; // lb, sb, lbu
2'b01: DataMisalignedM = VAdr[0]; // lh, sh, lhu
2'b10: DataMisalignedM = VAdr[1] | VAdr[0]; // lw, sw, flw, fsw, lwu
2'b11: DataMisalignedM = |VAdr[2:0]; // ld, sd, fld, fsd
endcase
// If the CPU's (not HPTW's) request is a page fault.
assign LoadMisalignedFaultM = DataMisalignedM & ReadAccessM;
assign StoreAmoMisalignedFaultM = DataMisalignedM & (WriteAccessM | AtomicAccessM);
// Specify which type of page fault is occurring
assign InstrPageFaultF = TLBPageFault & ExecuteAccessF;
assign LoadPageFaultM = TLBPageFault & ReadAccessM;
assign StoreAmoPageFaultM = TLBPageFault & (WriteAccessM | AtomicAccessM);
endmodule