cvw/pipelined/src/fpu/fcvtint.sv
2022-03-19 19:39:03 +00:00

187 lines
9.3 KiB
Systemverilog

`include "wally-config.vh"
// `include "../../config/rv64icfd/wally-config.vh"
// `define XLEN 64
module fcvt (
input logic XSgnE, // X's sign
input logic [10:0] XExpE, // X's exponent
input logic [52:0] XManE, // X's fraction
input logic XZeroE, // is X zero
input logic XNaNE, // is X NaN
input logic XInfE, // is X infinity
input logic XDenormE, // is X denormalized
input logic [`XLEN-1:0] ForwardedSrcAE, // integer input
input logic [2:0] FOpCtrlE, // chooses which instruction is done (full list below)
input logic [2:0] FrmE, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
input logic FmtE, // precision 1 = double 0 = single
output logic [63:0] CvtResE, // convert final result
output logic [4:0] CvtFlgE); // convert flags {invalid, divide by zero, overflow, underflow, inexact}
logic ResSgn; // FP result's sign
logic [10:0] ResExp,TmpExp; // FP result's exponent
logic [51:0] ResFrac; // FP result's fraction
logic [6:0] LZResP; // lz output
logic [7:0] Bits; // how many bits are in the integer result
logic [7:0] SubBits; // subtract these bits from the exponent (FP result)
logic [64+51:0] ShiftedManTmp; // Shifted mantissa
logic [64+51:0] ShiftVal; // value being shifted (to int - XMan, to FP - |integer input|)
logic [64+1:0] ShiftedMan; // shifted mantissa truncated
logic [64:0] RoundedTmp; // full size rounded result - in case of overfow
logic [63:0] Rounded; // rounded result
logic [12:0] ExpVal; // unbiased X exponent
logic [12:0] ShiftCnt; // how much is the mantissa shifted
logic [64-1:0] IntIn; // trimed integer input
logic [64-1:0] PosInt; // absolute value of the integer input
logic [63:0] CvtIntRes; // interger result from the fp -> int instructions
logic [63:0] CvtFPRes; // floating point result from the int -> fp instructions
logic Of, Uf; // did the integer result underflow or overflow
logic Guard, Round, LSB, Sticky; // bits used to determine rounding
logic Plus1,CalcPlus1; // do you add one for rounding
logic SgnRes; // sign of the floating point result
logic Res64, In64; // is the result or input 64 bits
logic RoundMSB; // most significant bit of the fraction
logic RoundSgn; // sign of the rounded result
logic Invalid, Inexact; // flags
// FOpCtrlE:
// fcvt.w.s = 001
// fcvt.wu.s = 011
// fcvt.s.w = 000
// fcvt.s.wu = 010
// fcvt.l.s = 101
// fcvt.lu.s = 111
// fcvt.s.l = 100
// fcvt.s.lu = 110
// fcvt.w.d = 001
// fcvt.wu.d = 011
// fcvt.d.w = 000
// fcvt.d.wu = 010
// fcvt.l.d = 101
// fcvt.lu.d = 111
// fcvt.d.l = 100
// fcvt.d.lu = 110
// {long, unsigned, to int}
// calculate signals based off the input and output's size
assign Res64 = (FOpCtrlE[0]&FOpCtrlE[2]) | (FmtE&~FOpCtrlE[0]);
assign In64 = (~FOpCtrlE[0]&FOpCtrlE[2]) | (FmtE&FOpCtrlE[0]);
assign SubBits = In64 ? 8'd64 : 8'd32;
assign Bits = Res64 ? 8'd64 : 8'd32;
// calulate the unbiased exponent
assign ExpVal = {1'b0,XExpE} - {1'b0, (11)'(`BIAS)} + {12'b0, XDenormE};
////////////////////////////////////////////////////////
// position the input in the most significant bits
assign IntIn = FOpCtrlE[2] ? {ForwardedSrcAE, {64-`XLEN{1'b0}}} : {ForwardedSrcAE[31:0], 32'b0};
// make the integer positive
assign PosInt = IntIn[64-1]&~FOpCtrlE[1] ? -IntIn : IntIn;
// determine the integer's sign
assign ResSgn = ~FOpCtrlE[1]&IntIn[64-1];
// Leading one detector
logic [8:0] i;
always_comb begin
i = 0;
while (~PosInt[64-1-i] & i < `XLEN) i = i+1; // search for leading one
LZResP = i[5:0]+1; // compute shift count
end
// if no one was found set to zero otherwise calculate the exponent
assign TmpExp = i==`XLEN ? 0 : FmtE ? 11'd1023 + {3'b0, SubBits} - {4'b0, LZResP} : 11'd127 + {3'b0, SubBits} - {4'b0, LZResP};
////////////////////////////////////////////
// select the shift value and amount based on operation (to fp or int)
assign ShiftCnt = FOpCtrlE[0] ? ExpVal : {6'b0, LZResP};
assign ShiftVal = FOpCtrlE[0] ? {{64-1{1'b0}}, XManE} : {PosInt, 52'b0};
// if shift = -1 then shift one bit right for gaurd bit (right shifting twice never rounds)
// if the shift is negitive add a bit for sticky bit calculation
// otherwise shift left
assign ShiftedManTmp = &ShiftCnt ? {{64{1'b0}}, XManE[52:1]} : ShiftCnt[12] ? {{64+51{1'b0}}, ~XZeroE} : ShiftVal << ShiftCnt;
// truncate the shifted mantissa
assign ShiftedMan = ShiftedManTmp[64+51:50];
// calculate sticky bit
// - take into account the possible right shift from before
// - the sticky bit calculation covers three diffrent sizes depending on the opperation
assign Sticky = |ShiftedManTmp[49:0] | &ShiftCnt&XManE[0] | (~FOpCtrlE[0]&|ShiftedManTmp[62:50]) | (~FOpCtrlE[0]&~FmtE&|ShiftedManTmp[91:63]);
// determine guard, round, and least significant bit of the result
assign Guard = FOpCtrlE[0] ? ShiftedMan[1] : FmtE ? ShiftedMan[13] : ShiftedMan[42];
assign Round = FOpCtrlE[0] ? ShiftedMan[0] : FmtE ? ShiftedMan[12] : ShiftedMan[41];
assign LSB = FOpCtrlE[0] ? ShiftedMan[2] : FmtE ? ShiftedMan[14] : ShiftedMan[43];
always_comb begin//*** remove guard bit
// Determine if you add 1
case (FrmE)
3'b000: CalcPlus1 = Guard & (Round | Sticky | (~Round&~Sticky&LSB));//round to nearest even
3'b001: CalcPlus1 = 0;//round to zero
3'b010: CalcPlus1 = (XSgnE&FOpCtrlE[0]) | (ResSgn&~FOpCtrlE[0]);//round down
3'b011: CalcPlus1 = (~XSgnE&FOpCtrlE[0]) | (~ResSgn&~FOpCtrlE[0]);//round up
3'b100: CalcPlus1 = Guard & (Round | Sticky | (~Round&~Sticky));//round to nearest max magnitude
default: CalcPlus1 = 1'bx;
endcase
end
// dont tound if the result is exact
assign Plus1 = CalcPlus1 & (Guard|Round|Sticky)&~(XZeroE&FOpCtrlE[0]);
// round the shifted mantissa
assign RoundedTmp = ShiftedMan[64+1:2] + {64'b0, Plus1};
assign {ResExp, ResFrac} = FmtE ? {TmpExp, ShiftedMan[64+1:14]} + {62'b0, Plus1} : {{TmpExp, ShiftedMan[64+1:43]} + {33'b0,Plus1}, 29'b0} ;
// fit the rounded result into the appropriate size and take the 2's complement if needed
assign Rounded = Res64 ? XSgnE&FOpCtrlE[0] ? -RoundedTmp[63:0] : RoundedTmp[63:0] :
XSgnE ? {{32{1'b1}}, -RoundedTmp[31:0]} : {32'b0, RoundedTmp[31:0]};
// extract the MSB and Sign for later use (will be used to determine underflow and overflow)
assign RoundMSB = Res64 ? RoundedTmp[64] : RoundedTmp[32];
assign RoundSgn = Res64 ? Rounded[63] : Rounded[31];
// check if the result overflows
assign Of = (~XSgnE&($signed(ShiftCnt) >= $signed({{5{Bits[7]}}, Bits}))) | (~XSgnE&RoundSgn&~FOpCtrlE[1]) | (RoundMSB&(ShiftCnt==({{5{Bits[7]}}, Bits}-1))) | (~XSgnE&XInfE) | XNaNE;
// check if the result underflows (this calculation changes if the result is signed or unsigned)
assign Uf = FOpCtrlE[1] ? XSgnE&~XZeroE | (XSgnE&XInfE) | (XSgnE&~XZeroE&(~ShiftCnt[12]|CalcPlus1)) | (ShiftCnt[12]&Plus1) : (XSgnE&XInfE) | (XSgnE&($signed(ShiftCnt) >= $signed({{5{Bits[7]}}, Bits}))) | (XSgnE&~RoundSgn&~ShiftCnt[12]); // assign CvtIntRes = (XSgnE | ShiftCnt[12]) ? {64{1'b0}} : (ShiftCnt >= 64) ? {64{1'b1}} : Rounded;
// calculate the result's sign
assign SgnRes = ~FOpCtrlE[2] & FOpCtrlE[0];
// select the integer result
assign CvtIntRes = Of ? FOpCtrlE[1] ? {64{1'b1}} : SgnRes ? {33'b0, {31{1'b1}}}: {1'b0, {63{1'b1}}} :
Uf ? FOpCtrlE[1] ? {63'b0, Plus1&~XSgnE} : SgnRes ? {{33{1'b1}}, 31'b0} : {1'b1, 63'b0} :
|RoundedTmp ? Rounded[64-1:0] : 64'b0;
// select the floating point result
assign CvtFPRes = FmtE ? {ResSgn, ResExp, ResFrac} : {{32{1'b1}}, ResSgn, ResExp[7:0], ResFrac[51:29]};
// select the result
assign CvtResE = FOpCtrlE[0] ? CvtIntRes : CvtFPRes;
// calculate the flags
// - only set invalid flag for out-of-range vales
// - set inexact if in representable range and not exact
if(`IEEE754) begin // checks before rounding
assign Invalid = (Of | Uf)&FOpCtrlE[0];
assign Inexact = (Guard|Round|Sticky)&~(&FOpCtrlE[1:0]&(XSgnE|Of))&~((Of|Uf)&~FOpCtrlE[1]&FOpCtrlE[0]);
assign CvtFlgE = {Invalid&~Inexact, 3'b0, Inexact};
end else begin // RISC-V checks if the result is in range after rounding
assign Invalid = (Of | Uf)&FOpCtrlE[0];
assign Inexact = (Guard|Round|Sticky)&~(&FOpCtrlE[1:0]&((XSgnE&~(ShiftCnt[12]&~Plus1))|Of))&~((Of|Uf)&~FOpCtrlE[1]&FOpCtrlE[0]);
assign CvtFlgE = {Invalid&~Inexact, 3'b0, Inexact};
end
endmodule // fpadd