cvw/pipelined/src/fpu/flags.sv

177 lines
11 KiB
Systemverilog

///////////////////////////////////////////
//
// Written: me@KatherineParry.com
// Modified: 7/5/2022
//
// Purpose: Post-Processing flag calculation
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module flags(
input logic Xs,
input logic XSNaN, YSNaN, ZSNaN, // inputs are signaling NaNs
input logic XInf, YInf, ZInf, // inputs are infinity
input logic Plus1,
input logic InfIn, // is a Inf input being used
input logic NaNIn, // is a NaN input being used
input logic [`FMTBITS-1:0] OutFmt, // output format
input logic XZero, YZero, // inputs are zero
input logic Sqrt, // Sqrt?
input logic ToInt, // convert to integer
input logic IntToFp, // convert integer to floating point
input logic Int64, // convert to 64 bit integer
input logic Signed, // convert to a signed integer
input logic [`NE:0] CvtCe, // the calculated expoent - Cvt
input logic CvtOp, // conversion opperation?
input logic DivOp, // conversion opperation?
input logic FmaOp, // Fma opperation?
input logic [`NE+1:0] FullRe, // Re with bits to determine sign and overflow
input logic [`NE+1:0] Me, // exponent of the normalized sum
input logic [1:0] CvtNegResMsbs, // the negitive integer result's most significant bits
input logic FmaAs, FmaPs, // the product and modified Z signs
input logic R, G, S, UfPlus1, // bits used to determine rounding
output logic DivByZero,
output logic IntInvalid, Invalid, Overflow, // flags used to select the res
output logic [4:0] PostProcFlg // flags
);
logic SigNaN; // is an input a signaling NaN
logic Inexact; // inexact flag
logic FpInexact; // floating point inexact flag
logic IntInexact; // integer inexact flag
logic FmaInvalid; // integer invalid flag
logic DivInvalid; // integer invalid flag
logic Underflow; // Underflow flag
logic ResExpGteMax; // is the result greater than or equal to the maximum floating point expoent
logic ShiftGtIntSz; // is the shift greater than the the integer size (use Re to account for possible roundning "shift")
///////////////////////////////////////////////////////////////////////////////
// Flags
///////////////////////////////////////////////////////////////////////////////
if (`FPSIZES == 1) begin
assign ResExpGteMax = &FullRe[`NE-1:0] | FullRe[`NE];
assign ShiftGtIntSz = (|FullRe[`NE:7]|(FullRe[6]&~Int64)) | ((|FullRe[4:0]|(FullRe[5]&Int64))&((FullRe[5]&~Int64) | FullRe[6]&Int64));
end else if (`FPSIZES == 2) begin
assign ResExpGteMax = OutFmt ? &FullRe[`NE-1:0] | FullRe[`NE] : &FullRe[`NE1-1:0] | (|FullRe[`NE:`NE1]);
assign ShiftGtIntSz = (|FullRe[`NE:7]|(FullRe[6]&~Int64)) | ((|FullRe[4:0]|(FullRe[5]&Int64))&((FullRe[5]&~Int64) | FullRe[6]&Int64));
end else if (`FPSIZES == 3) begin
always_comb
case (OutFmt)
`FMT: ResExpGteMax = &FullRe[`NE-1:0] | FullRe[`NE];
`FMT1: ResExpGteMax = &FullRe[`NE1-1:0] | (|FullRe[`NE:`NE1]);
`FMT2: ResExpGteMax = &FullRe[`NE2-1:0] | (|FullRe[`NE:`NE2]);
default: ResExpGteMax = 1'bx;
endcase
assign ShiftGtIntSz = (|FullRe[`NE:7]|(FullRe[6]&~Int64)) | ((|FullRe[4:0]|(FullRe[5]&Int64))&((FullRe[5]&~Int64) | FullRe[6]&Int64));
end else if (`FPSIZES == 4) begin
always_comb
case (OutFmt)
`Q_FMT: ResExpGteMax = &FullRe[`Q_NE-1:0] | FullRe[`Q_NE];
`D_FMT: ResExpGteMax = &FullRe[`D_NE-1:0] | (|FullRe[`Q_NE:`D_NE]);
`S_FMT: ResExpGteMax = &FullRe[`S_NE-1:0] | (|FullRe[`Q_NE:`S_NE]);
`H_FMT: ResExpGteMax = &FullRe[`H_NE-1:0] | (|FullRe[`Q_NE:`H_NE]);
endcase
// a left shift of intlen+1 is still in range but any more than that is an overflow
// inital: | 64 0's | XLEN |
// | 64 0's | XLEN | << 64
// | XLEN | 00000... |
// 65 = ...0 0 0 0 0 1 0 0 0 0 0 1
// | or | | or |
// 33 = ...0 0 0 0 0 0 1 0 0 0 0 1
// | or | | or |
// larger or equal if:
// - any of the bits after the most significan 1 is one
// - the most signifcant in 65 or 33 is still a one in the number and
// one of the later bits is one
assign ShiftGtIntSz = (|FullRe[`Q_NE:7]|(FullRe[6]&~Int64)) | ((|FullRe[4:0]|(FullRe[5]&Int64))&((FullRe[5]&~Int64) | FullRe[6]&Int64));
end
// if the result is greater than or equal to the max exponent(not taking into account sign)
// | and the exponent isn't negitive
// | | if the input isnt infinity or NaN
// | | |
assign Overflow = ResExpGteMax & ~FullRe[`NE+1]&~(InfIn|NaNIn|DivByZero);
// detecting tininess after rounding
// the exponent is negitive
// | the result is denormalized
// | | the result is normal and rounded from a denorm
// | | | and if given an unbounded exponent the result does not round
// | | | | and if the result is not exact
// | | | | | and if the input isnt infinity or NaN
// | | | | | |
assign Underflow = ((FullRe[`NE+1] | (FullRe == 0) | ((FullRe == 1) & (Me == 0) & ~(UfPlus1&G)))&(R|S|G))&~(InfIn|NaNIn|DivByZero|Invalid);
// Set Inexact flag if the res is diffrent from what would be outputed given infinite precision
// - Don't set the underflow flag if an underflowed res isn't outputed
assign FpInexact = (S|G|Overflow|R)&~(InfIn|NaNIn|DivByZero|Invalid);
// if the res is too small to be represented and not 0
// | and if the res is not invalid (outside the integer bounds)
// | |
assign IntInexact = ((CvtCe[`NE]&~XZero)|S|R|G)&~IntInvalid;
// select the inexact flag to output
assign Inexact = ToInt ? IntInexact : FpInexact;
// Set Invalid flag for following cases:
// 1) any input is a signaling NaN
// 2) Inf - Inf (unless x or y is NaN)
// 3) 0 * Inf
// if the input is NaN or infinity
// | if the integer res overflows (out of range)
// | | if the input was negitive but ouputing to a unsigned number
// | | | the res doesn't round to zero
// | | | | or the res rounds up out of bounds
// | | | | and the res didn't underflow
// | | | | |
assign IntInvalid = NaNIn|InfIn|(ShiftGtIntSz&~FullRe[`NE+1])|((Xs&~Signed)&(~((CvtCe[`NE]|(~|CvtCe))&~Plus1)))|(CvtNegResMsbs[1]^CvtNegResMsbs[0]);
// |
// or when the positive res rounds up out of range
assign SigNaN = (XSNaN&~(IntToFp&CvtOp)) | (YSNaN&~CvtOp) | (ZSNaN&FmaOp);
assign FmaInvalid = ((XInf | YInf) & ZInf & (FmaPs ^ FmaAs) & ~NaNIn) | (XZero & YInf) | (YZero & XInf);
assign DivInvalid = ((XInf & YInf) | (XZero & YZero))&~Sqrt | (Xs&Sqrt&~NaNIn&~XZero);
assign Invalid = SigNaN | (FmaInvalid&FmaOp) | (DivInvalid&DivOp);
// if dividing by zero and not 0/0
// - don't set flag if an input is NaN or Inf(IEEE says has to be a finite numerator)
assign DivByZero = YZero&DivOp&~Sqrt&~(XZero|NaNIn|InfIn);
// Combine flags
// - to integer results do not set the underflow or overflow flags
assign PostProcFlg = {Invalid|(IntInvalid&CvtOp&ToInt), DivByZero, Overflow&~(ToInt&CvtOp), Underflow&~(ToInt&CvtOp), Inexact};
endmodule