cvw/tests/coverage/tlbGLB.S

182 lines
5.5 KiB
ArmAsm

///////////////////////////////////////////
// tlbGLB.S
//
// Written: mmendozamanriquez@hmc.edu 4 April 2023
// nlimpert@hmc.edu
// Modified: kevin.j.thomas@okstate.edu May/4/20203
//
// Purpose: Coverage for the Page Table Entry Global flag check.
//
// A component of the CORE-V-WALLY configurable RISC-V project.
// https://github.com/openhwgroup/cvw
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the License); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
// load code to initalize stack, handle interrupts, terminate
#include "WALLY-init-lib.h"
# run-elf.bash find this in project description
main:
# Page table root address at 0x80010000
li t5, 0x9000000000080080 // try making asid = 0.
csrw satp, t5
# switch to supervisor mode
li a0, 1
ecall
li t5, 0 # j = 0, run nASID only once
li t3, 32 //Max amount of Loops = 32
li t4, 0x1000 //offset between addressses.
li t1, 0x00008067 //load in jalr x0 x1 0 instruction to be stored
setup:
li t0, 0xC0000000 //starting address
li t2, 0 # i = 0
beq t5, zero, loop //jump to first loop
loop2: #jump to each of the addresses in different address space
bge t2, t3, done
jalr t0 //jump to instruction at the virtual address
add t0, t0, t4 //change address for next loop
addi t2, t2, 1 //keep track of number of loops ran
j loop2
loop: #store jalr across memory
bge t2, t3, nASID # exit loop if i >= loops
sw t1, 0(t0) //stores this jalr in the virtual address
fence.I //invalidate instruction cache
jalr t0 //jump to instruction at the virtual address
add t0, t0, t4 //change address for next loop
addi t2, t2, 1 //keep track of number of loops ran
j loop
nASID: #swap to different address space -> jump to each address
li a0, 3 //swap to machine mode
ecall
li t5, 0x9000100000080080 //swap to address space 1 from 0
csrw satp, t5
li a0, 1 // change back to supervisor mode.
ecall
li t5, 1 //flag for finished after loops
j setup
.data
.align 19
# level 3 Page table situated at 0x8008 0000, should point to 8008,1000
pagetable:
.8byte 0x200204C1
.align 12 // level 2 page table, contains direction to a gigapageg
.8byte 0x0
.8byte 0x0
.8byte 0x200000EF // gigapage that starts at 8000 0000 goes to C000 0000
.8byte 0x200208E1 // pointer to next page table entry at 8008 2000
.align 12 // level 1 page table, points to level 0 page table
.8byte 0x20020CE1
.align 12 // level 0 page table, points to address C000 0000 // FOR NOW ALL OF THESE GO TO 8 instead of C cause they start with 2
.8byte 0x200000EF // access xC000 0000
.8byte 0x200004EF // access xC000 1000
.8byte 0x200008EF // access xC000 2000
.8byte 0x20000CEF // access xC000 3000
.8byte 0x200010EF // access xC000 4000
.8byte 0x200014EF
.8byte 0x200018EF
.8byte 0x20001CEF
.8byte 0x200020EF // access xC000 8000
.8byte 0x200024EF
.8byte 0x200028EF
.8byte 0x20002CEF
.8byte 0x200030EF // access xC000 C000
.8byte 0x200034EF
.8byte 0x200038EF
.8byte 0x20003CEF
.8byte 0x200040EF // access xC001 0000
.8byte 0x200044EF
.8byte 0x200048EF
.8byte 0x20004CEF
.8byte 0x200050EF // access xC001 4000
.8byte 0x200054EF
.8byte 0x200058EF
.8byte 0x20005CEF
.8byte 0x200060EF // access xC001 8000
.8byte 0x200064EF
.8byte 0x200068EF
.8byte 0x20006CEF
.8byte 0x200070EF // access xC001 C000
.8byte 0x200074eF
.8byte 0x200078EF
.8byte 0x20007CEF
.8byte 0x200080EF // access xC002 0000
.8byte 0x200084EF
.8byte 0x200088EF
.8byte 0x20008CEF
.8byte 0x200010EF // access xC000 4000
.8byte 0x200014EF
.8byte 0x200018EF
.8byte 0x20001CEF
.8byte 0x200020EF // access xC000 8000
.8byte 0x200024EF
.8byte 0x200028EF
.8byte 0x20002CEF
.8byte 0x200030EF // access xC000 C000
.8byte 0x200034EF
.8byte 0x200038EF
.8byte 0x20003CEF
.8byte 0x200040EF // access xC001 0000
.8byte 0x200044EF
.8byte 0x200048EF
.8byte 0x20004CEF
.8byte 0x200050EF // access xC001 4000
.8byte 0x200054EF
.8byte 0x200058EF
.8byte 0x20005CEF
.8byte 0x200060EF // access xC001 8000
.8byte 0x200064EF
.8byte 0x200068EF
.8byte 0x20006CEF
.8byte 0x200070EF // access xC001 C000
.8byte 0x200074eF
.8byte 0x200078EF
.8byte 0x20007CEF
.8byte 0x200080EF // access xC002 0000
.8byte 0x200084EF
.8byte 0x200088EF
.8byte 0x20008CEF