mirror of
				https://github.com/openhwgroup/cvw
				synced 2025-02-11 06:05:49 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			366 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Systemverilog
		
	
	
	
	
	
			
		
		
	
	
			366 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Systemverilog
		
	
	
	
	
	
///////////////////////////////////////////
 | 
						|
// srt.sv
 | 
						|
//
 | 
						|
// Written: David_Harris@hmc.edu 13 January 2022
 | 
						|
// Modified: cturek@hmc.edu June 2022
 | 
						|
//
 | 
						|
// Purpose: Combined Divide and Square Root Floating Point and Integer Unit
 | 
						|
// 
 | 
						|
// A component of the Wally configurable RISC-V project.
 | 
						|
// 
 | 
						|
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
 | 
						|
//
 | 
						|
// MIT LICENSE
 | 
						|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this 
 | 
						|
// software and associated documentation files (the "Software"), to deal in the Software 
 | 
						|
// without restriction, including without limitation the rights to use, copy, modify, merge, 
 | 
						|
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons 
 | 
						|
// to whom the Software is furnished to do so, subject to the following conditions:
 | 
						|
//
 | 
						|
//   The above copyright notice and this permission notice shall be included in all copies or 
 | 
						|
//   substantial portions of the Software.
 | 
						|
//
 | 
						|
//   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
 | 
						|
//   INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
 | 
						|
//   PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 
 | 
						|
//   BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 
 | 
						|
//   TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE 
 | 
						|
//   OR OTHER DEALINGS IN THE SOFTWARE.
 | 
						|
////////////////////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
`include "wally-config.vh"
 | 
						|
`define EXTRAFRACBITS ((`NF<(`XLEN)) ? (`XLEN - `NF) : 0)
 | 
						|
`define EXTRAINTBITS ((`NF<(`XLEN)) ? 0 : (`NF - `XLEN))
 | 
						|
 | 
						|
module srt (
 | 
						|
  input  logic clk,
 | 
						|
  input  logic Start, 
 | 
						|
  input  logic Stall, // *** multiple pipe stages
 | 
						|
  input  logic Flush, // *** multiple pipe stages
 | 
						|
  // Floating Point Inputs
 | 
						|
  // later add exponents, signs, special cases
 | 
						|
  input  logic       XSign, YSign,
 | 
						|
  input  logic [`NE-1:0] XExp, YExp,
 | 
						|
  input  logic [`NF-1:0] SrcXFrac, SrcYFrac,
 | 
						|
  input  logic [`XLEN-1:0] SrcA, SrcB,
 | 
						|
  input  logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit
 | 
						|
  input  logic       W64, // 32-bit ints on XLEN=64
 | 
						|
  input  logic       Signed, // Interpret integers as signed 2's complement
 | 
						|
  input  logic       Int, // Choose integer inputs
 | 
						|
  input  logic       Sqrt, // perform square root, not divide
 | 
						|
  output logic       rsign,
 | 
						|
  output logic [`DIVLEN-1:0] Quot, Rem, QuotOTFC, // *** later handle integers
 | 
						|
  output logic [`NE-1:0] rExp,
 | 
						|
  output logic [3:0] Flags
 | 
						|
);
 | 
						|
 | 
						|
  logic           qp, qz, qm; // quotient is +1, 0, or -1
 | 
						|
  logic [`NE-1:0] calcExp;
 | 
						|
  logic           calcSign;
 | 
						|
  logic [`DIVLEN-1:0]  X, Dpreproc;
 | 
						|
  logic [`DIVLEN+3:0]  WS, WSA, WSN, WC, WCA, WCN, D, Db, Dsel;
 | 
						|
  logic [`DIVLEN+2:0]  rp, rm;
 | 
						|
  logic [$clog2(`XLEN+1)-1:0] intExp;
 | 
						|
  logic           intSign;
 | 
						|
 
 | 
						|
  srtpreproc preproc(SrcA, SrcB, SrcXFrac, SrcYFrac, Fmt, W64, Signed, Int, Sqrt, X, Dpreproc, intExp, intSign);
 | 
						|
 | 
						|
  // Top Muxes and Registers
 | 
						|
  // When start is asserted, the inputs are loaded into the divider.
 | 
						|
  // Otherwise, the divisor is retained and the partial remainder
 | 
						|
  // is fed back for the next iteration.
 | 
						|
  mux2   #(`DIVLEN+4) wsmux({WSA[`DIVLEN+2:0], 1'b0}, {4'b0001, X}, Start, WSN);
 | 
						|
  flop   #(`DIVLEN+4) wsflop(clk, WSN, WS);
 | 
						|
  mux2   #(`DIVLEN+4) wcmux({WCA[`DIVLEN+2:0], 1'b0}, {(`DIVLEN+4){1'b0}}, Start, WCN);
 | 
						|
  flop   #(`DIVLEN+4) wcflop(clk, WCN, WC);
 | 
						|
  flopen #(`DIVLEN+4) dflop(clk, Start, {4'b0001, Dpreproc}, D);
 | 
						|
 | 
						|
  // Quotient Selection logic
 | 
						|
  // Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm)
 | 
						|
  qsel2 qsel2(WS[`DIVLEN+3:`DIVLEN], WC[`DIVLEN+3:`DIVLEN], qp, qz, qm);
 | 
						|
  // Accumulate quotient digits in a shift register (now done in OTFC)
 | 
						|
  qacc #(`DIVLEN+3) qacc(clk, Start, qp, qz, qm, rp, rm);
 | 
						|
  flopen #(`NE) expflop(clk, Start, calcExp, rExp);
 | 
						|
  flopen #(1) signflop(clk, Start, calcSign, rsign);
 | 
						|
 | 
						|
  // Divisor Selection logic
 | 
						|
  inv dinv(D, Db);
 | 
						|
  mux3onehot #(`DIVLEN) divisorsel(Db, {(`DIVLEN+4){1'b0}}, D, qp, qz, qm, Dsel);
 | 
						|
 | 
						|
  // Partial Product Generation
 | 
						|
  csa    #(`DIVLEN+4) csa(WS, WC, Dsel, qp, WSA, WCA);
 | 
						|
  
 | 
						|
  otfc2  #(`DIVLEN) otfc2(clk, Start, qp, qz, qm, QuotOTFC);
 | 
						|
 | 
						|
  expcalc expcalc(.XExp, .YExp, .calcExp);
 | 
						|
 | 
						|
  signcalc signcalc(.XSign, .YSign, .calcSign);
 | 
						|
 | 
						|
  srtpostproc postproc(rp, rm, Quot);
 | 
						|
endmodule
 | 
						|
 | 
						|
////////////////
 | 
						|
// Submodules //
 | 
						|
////////////////
 | 
						|
 | 
						|
///////////////////
 | 
						|
// Preprocessing //
 | 
						|
///////////////////
 | 
						|
module srtpreproc (
 | 
						|
  input  logic [`XLEN-1:0] SrcA, SrcB,
 | 
						|
  input  logic [`NF-1:0] SrcXFrac, SrcYFrac,
 | 
						|
  input  logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit
 | 
						|
  input  logic       W64, // 32-bit ints on XLEN=64
 | 
						|
  input  logic       Signed, // Interpret integers as signed 2's complement
 | 
						|
  input  logic       Int, // Choose integer inputs
 | 
						|
  input  logic       Sqrt, // perform square root, not divide
 | 
						|
  output logic [`DIVLEN-1:0] X, D,
 | 
						|
  output logic [$clog2(`XLEN+1)-1:0] intExp, // Quotient integer exponent
 | 
						|
  output logic       intSign // Quotient integer sign
 | 
						|
);
 | 
						|
 | 
						|
  logic  [$clog2(`XLEN+1)-1:0] zeroCntA, zeroCntB;
 | 
						|
  logic  [`XLEN-1:0] PosA, PosB;
 | 
						|
  logic  [`DIVLEN-1:0] ExtraA, ExtraB, PreprocA, PreprocB, PreprocX, PreprocY;
 | 
						|
 | 
						|
  assign PosA = (Signed & SrcA[`XLEN - 1]) ? -SrcA : SrcA;
 | 
						|
  assign PosB = (Signed & SrcB[`XLEN - 1]) ? -SrcB : SrcB;
 | 
						|
 | 
						|
  lzc #(`XLEN) lzcA (PosA, zeroCntA);
 | 
						|
  lzc #(`XLEN) lzcB (PosB, zeroCntB);
 | 
						|
 | 
						|
  assign ExtraA = {PosA, {`EXTRAINTBITS{1'b0}}};
 | 
						|
  assign ExtraB = {PosB, {`EXTRAINTBITS{1'b0}}};
 | 
						|
 | 
						|
  assign PreprocA = ExtraA << zeroCntA;
 | 
						|
  assign PreprocB = ExtraB << zeroCntB;
 | 
						|
  assign PreprocX = {SrcXFrac, {`EXTRAFRACBITS{1'b0}}};
 | 
						|
  assign PreprocY = {SrcYFrac, {`EXTRAFRACBITS{1'b0}}};
 | 
						|
 | 
						|
  
 | 
						|
  assign X = Int ? PreprocA : PreprocX;
 | 
						|
  assign D = Int ? PreprocB : PreprocY;
 | 
						|
  assign intExp = zeroCntB - zeroCntA + 1;
 | 
						|
  assign intSign = Signed & (SrcA[`XLEN - 1] ^ SrcB[`XLEN - 1]);
 | 
						|
endmodule
 | 
						|
 | 
						|
/////////////////////////////////
 | 
						|
// Quotient Selection, Radix 2 //
 | 
						|
/////////////////////////////////
 | 
						|
module qsel2 ( // *** eventually just change to 4 bits
 | 
						|
  input  logic [`DIVLEN+3:`DIVLEN] ps, pc, 
 | 
						|
  output logic         qp, qz, qm
 | 
						|
);
 | 
						|
 
 | 
						|
  logic [`DIVLEN+3:`DIVLEN]  p, g;
 | 
						|
  logic          magnitude, sign, cout;
 | 
						|
 | 
						|
  // The quotient selection logic is presented for simplicity, not
 | 
						|
  // for efficiency.  You can probably optimize your logic to
 | 
						|
  // select the proper divisor with less delay.
 | 
						|
 | 
						|
  // Quotient equations from EE371 lecture notes 13-20
 | 
						|
  assign p = ps ^ pc;
 | 
						|
  assign g = ps & pc;
 | 
						|
 | 
						|
  assign #1 magnitude = ~(&p[`DIVLEN+2:`DIVLEN]);
 | 
						|
  assign #1 cout = g[`DIVLEN+2] | (p[`DIVLEN+2] & (g[`DIVLEN+1] | p[`DIVLEN+1] & g[`DIVLEN]));
 | 
						|
  assign #1 sign = p[`DIVLEN+3] ^ cout;
 | 
						|
/*  assign #1 magnitude = ~((ps[54]^pc[54]) & (ps[53]^pc[53]) & 
 | 
						|
			  (ps[52]^pc[52]));
 | 
						|
  assign #1 sign = (ps[55]^pc[55])^
 | 
						|
      (ps[54] & pc[54] | ((ps[54]^pc[54]) &
 | 
						|
			    (ps[53]&pc[53] | ((ps[53]^pc[53]) &
 | 
						|
						(ps[52]&pc[52]))))); */
 | 
						|
 | 
						|
  // Produce quotient = +1, 0, or -1
 | 
						|
  assign #1 qp = magnitude & ~sign;
 | 
						|
  assign #1 qz = ~magnitude;
 | 
						|
  assign #1 qm = magnitude & sign;
 | 
						|
endmodule
 | 
						|
 | 
						|
//////////
 | 
						|
// qacc //
 | 
						|
//////////
 | 
						|
// To be replaced by OTFC
 | 
						|
module qacc #(parameter N=68) (
 | 
						|
  input  logic         clk, 
 | 
						|
  input  logic         req, 
 | 
						|
  input  logic         qp, qz, qm, 
 | 
						|
  output logic [N-1:0] rp, rm
 | 
						|
);
 | 
						|
 | 
						|
  flopr #(N) rmreg(clk, req, {rm[N-2:0], qm}, rm);
 | 
						|
  flopr #(N) rpreg(clk, req, {rp[N-2:0], qp}, rp);
 | 
						|
/*  always @(posedge clk)
 | 
						|
    begin
 | 
						|
      if (req) 
 | 
						|
	begin
 | 
						|
	  rp <= #1 0;
 | 
						|
	  rm <= #1 0;
 | 
						|
	end
 | 
						|
      else 
 | 
						|
	begin
 | 
						|
	  rm <= #1 {rm[54:0], qm};
 | 
						|
	  rp <= #1 {rp[54:0], qp};
 | 
						|
	end
 | 
						|
    end */
 | 
						|
endmodule
 | 
						|
 | 
						|
///////////////////////////////////
 | 
						|
// On-The-Fly Converter, Radix 2 //
 | 
						|
///////////////////////////////////
 | 
						|
module otfc2 #(parameter N=65) (
 | 
						|
  input  logic         clk,
 | 
						|
  input  logic         Start,
 | 
						|
  input  logic         qp, qz, qm,
 | 
						|
  output logic [N-1:0] r
 | 
						|
);
 | 
						|
 | 
						|
  //  The on-the-fly converter transfers the quotient 
 | 
						|
  //  bits to the quotient as they come. 
 | 
						|
  //
 | 
						|
  //  This code follows the psuedocode presented in the 
 | 
						|
  //  floating point chapter of the book. Right now, 
 | 
						|
  //  it is written for Radix-2 division.
 | 
						|
  //
 | 
						|
  //  QM is Q-1. It allows us to write negative bits 
 | 
						|
  //  without using a costly CPA. 
 | 
						|
  logic [N+2:0] Q, QM, QNext, QMNext, QMMux;
 | 
						|
  //  QR and QMR are the shifted versions of Q and QM.
 | 
						|
  //  They are treated as [N-1:r] size signals, and 
 | 
						|
  //  discard the r most significant bits of Q and QM. 
 | 
						|
  logic [N+1:0] QR, QMR;
 | 
						|
 | 
						|
  flopr #(N+3) Qreg(clk, Start, QNext, Q);
 | 
						|
  mux2 #(`DIVLEN+3) QMmux(QMNext, {`DIVLEN+3{1'b1}}, Start, QMMux);
 | 
						|
  flop #(`DIVLEN+3) QMreg(clk, QMMux, QM);
 | 
						|
 | 
						|
  always_comb begin
 | 
						|
    QR  = Q[N+1:0];
 | 
						|
    QMR = QM[N+1:0];     // Shift Q and QM
 | 
						|
    if (qp) begin
 | 
						|
      QNext  = {QR,  1'b1};
 | 
						|
      QMNext = {QR,  1'b0};
 | 
						|
    end else if (qz) begin
 | 
						|
      QNext  = {QR,  1'b0};
 | 
						|
      QMNext = {QMR, 1'b1};
 | 
						|
    end else begin        // If qp and qz are not true, then qm is
 | 
						|
      QNext  = {QMR, 1'b1};
 | 
						|
      QMNext = {QMR, 1'b0};
 | 
						|
    end 
 | 
						|
  end
 | 
						|
  assign r = Q[N+2] ? Q[N+1:2] : Q[N:1];
 | 
						|
 | 
						|
endmodule
 | 
						|
 | 
						|
/////////
 | 
						|
// inv //
 | 
						|
/////////
 | 
						|
module inv(input  logic [`DIVLEN+3:0] in, 
 | 
						|
           output logic [`DIVLEN+3:0] out);
 | 
						|
 | 
						|
  assign #1 out = ~in;
 | 
						|
endmodule
 | 
						|
 | 
						|
//////////
 | 
						|
// mux3 //
 | 
						|
//////////
 | 
						|
module mux3onehot #(parameter N=65) (
 | 
						|
  input  logic [N+3:0] in0, in1, in2,
 | 
						|
  input  logic         sel0, sel1, sel2,
 | 
						|
  output logic [N+3:0] out
 | 
						|
);
 | 
						|
 | 
						|
  // lazy inspection of the selects
 | 
						|
  // really we should make sure selects are mutually exclusive
 | 
						|
  assign #1 out = sel0 ? in0 : (sel1 ? in1 : in2);
 | 
						|
endmodule
 | 
						|
 | 
						|
 | 
						|
/////////
 | 
						|
// csa //
 | 
						|
/////////
 | 
						|
module csa #(parameter N=69) (
 | 
						|
  input  logic [N-1:0] in1, in2, in3, 
 | 
						|
  input  logic         cin, 
 | 
						|
  output logic [N-1:0] out1, out2
 | 
						|
);
 | 
						|
 | 
						|
  // This block adds in1, in2, in3, and cin to produce 
 | 
						|
  // a result out1 / out2 in carry-save redundant form.
 | 
						|
  // cin is just added to the least significant bit and
 | 
						|
  // is required to handle adding a negative divisor.
 | 
						|
  // Fortunately, the carry (out2) is shifted left by one
 | 
						|
  // bit, leaving room in the least significant bit to 
 | 
						|
  // insert cin.
 | 
						|
 | 
						|
  assign #1 out1 = in1 ^ in2 ^ in3;
 | 
						|
  assign #1 out2 = {in1[N-2:0] & (in2[N-2:0] | in3[N-2:0]) | 
 | 
						|
		    (in2[N-2:0] & in3[N-2:0]), cin};
 | 
						|
endmodule
 | 
						|
 | 
						|
 | 
						|
//////////////
 | 
						|
// expcalc  //
 | 
						|
//////////////
 | 
						|
module expcalc(
 | 
						|
  input logic  [`NE-1:0] XExp, YExp,
 | 
						|
  output logic [`NE-1:0] calcExp
 | 
						|
);
 | 
						|
 | 
						|
  assign calcExp = XExp - YExp + (`NE)'(`BIAS);
 | 
						|
 | 
						|
endmodule
 | 
						|
 | 
						|
//////////////
 | 
						|
// signcalc //
 | 
						|
//////////////
 | 
						|
module signcalc(
 | 
						|
  input logic  XSign, YSign,
 | 
						|
  output logic calcSign
 | 
						|
);
 | 
						|
 | 
						|
  assign calcSign = XSign ^ YSign;
 | 
						|
 | 
						|
endmodule
 | 
						|
 | 
						|
////////////////////
 | 
						|
// Postprocessing //
 | 
						|
////////////////////
 | 
						|
module srtpostproc (
 | 
						|
  input  [`DIVLEN+2:0] rp, rm,
 | 
						|
  output [`DIVLEN-1:0] Quot
 | 
						|
);
 | 
						|
 | 
						|
  //assign Quot = rp - rm;
 | 
						|
  finaladd #(`DIVLEN+3) finaladd(rp, rm, Quot);
 | 
						|
endmodule
 | 
						|
 | 
						|
//////////////
 | 
						|
// finaladd //
 | 
						|
//////////////
 | 
						|
module finaladd #(parameter N=68) (
 | 
						|
  input  logic [N-1:0] rp, rm, 
 | 
						|
  output logic [N-4:0] r
 | 
						|
);
 | 
						|
 | 
						|
  logic   [N-1:0] diff;
 | 
						|
 | 
						|
  // this magic block performs the final addition for you
 | 
						|
  // to convert the positive and negative quotient digits
 | 
						|
  // into a normalized mantissa.  It returns the 52 bit
 | 
						|
  // mantissa after shifting to guarantee a leading 1.
 | 
						|
  // You can assume this block operates in one cycle
 | 
						|
  // and do not need to budget it in your area and power
 | 
						|
  // calculations.
 | 
						|
	
 | 
						|
  // Since no rounding is performed, the result may be too 
 | 
						|
  // small by one unit in the least significant place (ulp).
 | 
						|
  // The checker ignores such an error.
 | 
						|
 | 
						|
  assign #1 diff = rp - rm;
 | 
						|
  assign #1 r = diff[N-1] ? diff[N-2:2] : diff[N-3:1];
 | 
						|
endmodule
 | 
						|
 |