mirror of
https://github.com/openhwgroup/cvw
synced 2025-01-24 05:24:49 +00:00
1007 lines
27 KiB
Systemverilog
1007 lines
27 KiB
Systemverilog
// ppa.sv
|
|
// Teo Ene & David_Harris@hmc.edu 11 May 2022
|
|
// & mmasserfrye@hmc.edu
|
|
// Measure PPA of various building blocks
|
|
|
|
module ppa_comparator_8 #(parameter WIDTH=8) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
input logic sgnd,
|
|
output logic [1:0] flags);
|
|
|
|
ppa_comparator #(WIDTH) comp (.*);
|
|
endmodule
|
|
|
|
module ppa_comparator_16 #(parameter WIDTH=16) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
input logic sgnd,
|
|
output logic [1:0] flags);
|
|
|
|
ppa_comparator #(WIDTH) comp (.*);
|
|
endmodule
|
|
|
|
module ppa_comparator_32 #(parameter WIDTH=32) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
input logic sgnd,
|
|
output logic [1:0] flags);
|
|
|
|
ppa_comparator #(WIDTH) comp (.*);
|
|
endmodule
|
|
|
|
module ppa_comparator_64 #(parameter WIDTH=64) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
input logic sgnd,
|
|
output logic [1:0] flags);
|
|
|
|
ppa_comparator #(WIDTH) comp (.*);
|
|
endmodule
|
|
|
|
module ppa_comparator_128 #(parameter WIDTH=128) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
input logic sgnd,
|
|
output logic [1:0] flags);
|
|
|
|
ppa_comparator #(WIDTH) comp (.*);
|
|
endmodule
|
|
|
|
module ppa_comparator #(parameter WIDTH=16) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
input logic sgnd,
|
|
output logic [1:0] flags);
|
|
|
|
logic eq, lt, ltu;
|
|
logic [WIDTH-1:0] af, bf;
|
|
|
|
// For signed numbers, flip most significant bit
|
|
assign af = {a[WIDTH-1] ^ sgnd, a[WIDTH-2:0]};
|
|
assign bf = {b[WIDTH-1] ^ sgnd, b[WIDTH-2:0]};
|
|
|
|
// behavioral description gives best results
|
|
assign eq = (af == bf);
|
|
assign lt = (af < bf);
|
|
assign flags = {eq, lt};
|
|
endmodule
|
|
|
|
module ppa_add_8 #(parameter WIDTH=8) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = a + b;
|
|
endmodule
|
|
|
|
module ppa_add_16 #(parameter WIDTH=16) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = a + b;
|
|
endmodule
|
|
|
|
module ppa_add_32 #(parameter WIDTH=32) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = a + b;
|
|
endmodule
|
|
|
|
module ppa_add_64 #(parameter WIDTH=64) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = a + b;
|
|
endmodule
|
|
|
|
module ppa_add_128 #(parameter WIDTH=128) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = a + b;
|
|
endmodule
|
|
|
|
module ppa_mult_8 #(parameter WIDTH=8) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
output logic [WIDTH*2-1:0] y); //is this right width
|
|
assign y = a * b;
|
|
endmodule
|
|
|
|
module ppa_mult_16 #(parameter WIDTH=16) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
output logic [WIDTH*2-1:0] y); //is this right width
|
|
assign y = a * b;
|
|
endmodule
|
|
|
|
module ppa_mult_32 #(parameter WIDTH=32) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
output logic [WIDTH*2-1:0] y); //is this right width
|
|
assign y = a * b;
|
|
endmodule
|
|
|
|
module ppa_mult_64 #(parameter WIDTH=64) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
output logic [WIDTH*2-1:0] y); //is this right width
|
|
assign y = a * b;
|
|
endmodule
|
|
|
|
module ppa_mult_128 #(parameter WIDTH=128) (
|
|
input logic [WIDTH-1:0] a, b,
|
|
output logic [WIDTH*2-1:0] y); //is this right width
|
|
assign y = a * b;
|
|
endmodule
|
|
|
|
module ppa_alu_8 #(parameter WIDTH=8) (
|
|
input logic [WIDTH-1:0] A, B,
|
|
input logic [2:0] ALUControl,
|
|
input logic [2:0] Funct3,
|
|
output logic [WIDTH-1:0] Result,
|
|
output logic [WIDTH-1:0] Sum);
|
|
|
|
ppa_alu #(WIDTH) alu (.*);
|
|
endmodule
|
|
|
|
module ppa_alu_16 #(parameter WIDTH=16) (
|
|
input logic [WIDTH-1:0] A, B,
|
|
input logic [2:0] ALUControl,
|
|
input logic [2:0] Funct3,
|
|
output logic [WIDTH-1:0] Result,
|
|
output logic [WIDTH-1:0] Sum);
|
|
|
|
ppa_alu #(WIDTH) alu (.*);
|
|
endmodule
|
|
|
|
module ppa_alu_32 #(parameter WIDTH=32) (
|
|
input logic [WIDTH-1:0] A, B,
|
|
input logic [2:0] ALUControl,
|
|
input logic [2:0] Funct3,
|
|
output logic [WIDTH-1:0] Result,
|
|
output logic [WIDTH-1:0] Sum);
|
|
|
|
ppa_alu #(WIDTH) alu (.*);
|
|
endmodule
|
|
|
|
module ppa_alu_64 #(parameter WIDTH=64) (
|
|
input logic [WIDTH-1:0] A, B,
|
|
input logic [2:0] ALUControl,
|
|
input logic [2:0] Funct3,
|
|
output logic [WIDTH-1:0] Result,
|
|
output logic [WIDTH-1:0] Sum);
|
|
|
|
ppa_alu #(WIDTH) alu (.*);
|
|
endmodule
|
|
|
|
module ppa_alu_128 #(parameter WIDTH=128) (
|
|
input logic [WIDTH-1:0] A, B,
|
|
input logic [2:0] ALUControl,
|
|
input logic [2:0] Funct3,
|
|
output logic [WIDTH-1:0] Result,
|
|
output logic [WIDTH-1:0] Sum);
|
|
|
|
ppa_alu #(WIDTH) alu (.*);
|
|
endmodule
|
|
|
|
module ppa_alu #(parameter WIDTH=32) (
|
|
input logic [WIDTH-1:0] A, B,
|
|
input logic [2:0] ALUControl,
|
|
input logic [2:0] Funct3,
|
|
output logic [WIDTH-1:0] Result,
|
|
output logic [WIDTH-1:0] Sum);
|
|
|
|
logic [WIDTH-1:0] CondInvB, Shift, SLT, SLTU, FullResult;
|
|
logic Carry, Neg;
|
|
logic LT, LTU;
|
|
logic W64, SubArith, ALUOp;
|
|
logic [2:0] ALUFunct;
|
|
logic Asign, Bsign;
|
|
|
|
// Extract control signals
|
|
// W64 indicates RV64 W-suffix instructions acting on lower 32-bit word
|
|
// SubArith indicates subtraction
|
|
// ALUOp = 0 for address generation addition or 1 for regular ALU
|
|
assign {W64, SubArith, ALUOp} = ALUControl;
|
|
|
|
// addition
|
|
assign CondInvB = SubArith ? ~B : B;
|
|
assign {Carry, Sum} = A + CondInvB + {{(WIDTH-1){1'b0}}, SubArith};
|
|
|
|
// Shifts
|
|
ppa_shifter #(WIDTH) sh(.A, .Amt(B[$clog2(WIDTH)-1:0]), .Right(Funct3[2]), .Arith(SubArith), .W64, .Y(Shift));
|
|
|
|
// condition code flags based on subtract output Sum = A-B
|
|
// Overflow occurs when the numbers being subtracted have the opposite sign
|
|
// and the result has the opposite sign of A
|
|
assign Neg = Sum[WIDTH-1];
|
|
assign Asign = A[WIDTH-1];
|
|
assign Bsign = B[WIDTH-1];
|
|
assign LT = Asign & ~Bsign | Asign & Neg | ~Bsign & Neg; // simplified from Overflow = Asign & Bsign & Asign & Neg; LT = Neg ^ Overflow
|
|
assign LTU = ~Carry;
|
|
|
|
// SLT
|
|
assign SLT = {{(WIDTH-1){1'b0}}, LT};
|
|
assign SLTU = {{(WIDTH-1){1'b0}}, LTU};
|
|
|
|
// Select appropriate ALU Result
|
|
assign ALUFunct = Funct3 & {3{ALUOp}}; // Force ALUFunct to 0 to Add when ALUOp = 0
|
|
always_comb
|
|
casez (ALUFunct)
|
|
3'b000: FullResult = Sum; // add or sub
|
|
3'b?01: FullResult = Shift; // sll, sra, or srl
|
|
3'b010: FullResult = SLT; // slt
|
|
3'b011: FullResult = SLTU; // sltu
|
|
3'b100: FullResult = A ^ B; // xor
|
|
3'b110: FullResult = A | B; // or
|
|
3'b111: FullResult = A & B; // and
|
|
endcase
|
|
|
|
assign Result = FullResult;
|
|
// not using W64 so it has the same architecture regardless of width
|
|
// // support W-type RV64I ADDW/SUBW/ADDIW/Shifts that sign-extend 32-bit result to 64 bits
|
|
// if (WIDTH==64) assign Result = W64 ? {{32{FullResult[31]}}, FullResult[31:0]} : FullResult;
|
|
// else assign Result = FullResult;
|
|
endmodule
|
|
|
|
module ppa_shiftleft_8 #(parameter WIDTH=8) (
|
|
input logic [WIDTH-1:0] a,
|
|
input logic [$clog2(WIDTH)-1:0] amt,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = a << amt;
|
|
endmodule
|
|
|
|
module ppa_shiftleft_16 #(parameter WIDTH=16) (
|
|
input logic [WIDTH-1:0] a,
|
|
input logic [$clog2(WIDTH)-1:0] amt,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = a << amt;
|
|
endmodule
|
|
|
|
module ppa_shiftleft_32 #(parameter WIDTH=32) (
|
|
input logic [WIDTH-1:0] a,
|
|
input logic [$clog2(WIDTH)-1:0] amt,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = a << amt;
|
|
endmodule
|
|
|
|
module ppa_shiftleft_64 #(parameter WIDTH=64) (
|
|
input logic [WIDTH-1:0] a,
|
|
input logic [$clog2(WIDTH)-1:0] amt,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = a << amt;
|
|
endmodule
|
|
|
|
module ppa_shiftleft_128 #(parameter WIDTH=128) (
|
|
input logic [WIDTH-1:0] a,
|
|
input logic [$clog2(WIDTH)-1:0] amt,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = a << amt;
|
|
endmodule
|
|
|
|
module ppa_shifter #(parameter WIDTH=32) (
|
|
input logic [WIDTH-1:0] A,
|
|
input logic [$clog2(WIDTH)-1:0] Amt,
|
|
input logic Right, Arith, W64,
|
|
output logic [WIDTH-1:0] Y);
|
|
|
|
logic [2*WIDTH-2:0] z, zshift;
|
|
logic [$clog2(WIDTH)-1:0] amttrunc, offset;
|
|
|
|
// Handle left and right shifts with a funnel shifter.
|
|
// For RV32, only 32-bit shifts are needed.
|
|
// For RV64, 32 and 64-bit shifts are needed, with sign extension.
|
|
|
|
// funnel shifter input (see CMOS VLSI Design 4e Section 11.8.1, note Table 11.11 shift types wrong)
|
|
// if (WIDTH == 64 | WIDTH ==128) begin:shifter // RV64 or 128
|
|
// always_comb // funnel mux
|
|
// if (W64) begin // 32-bit shifts
|
|
// if (Right)
|
|
// if (Arith) z = {{WIDTH{1'b0}}, {WIDTH/2 -1{A[WIDTH/2 -1]}}, A[WIDTH/2 -1:0]};
|
|
// else z = {{WIDTH*3/2-1{1'b0}}, A[WIDTH/2 -1:0]};
|
|
// else z = {{WIDTH/2{1'b0}}, A[WIDTH/2 -1:0], {WIDTH-1{1'b0}}};
|
|
// end else begin
|
|
// if (Right)
|
|
// if (Arith) z = {{WIDTH-1{A[WIDTH-1]}}, A};
|
|
// else z = {{WIDTH-1{1'b0}}, A};
|
|
// else z = {A, {WIDTH-1{1'b0}}};
|
|
// end
|
|
// assign amttrunc = W64 ? {1'b0, Amt[$clog2(WIDTH)-2:0]} : Amt; // 32 or 64-bit shift
|
|
// end else begin:shifter // RV32 or less
|
|
// always_comb // funnel mux
|
|
// if (Right)
|
|
// if (Arith) z = {{WIDTH-1{A[WIDTH-1]}}, A};
|
|
// else z = {{WIDTH-1{1'b0}}, A};
|
|
// else z = {A, {WIDTH-1{1'b0}}};
|
|
// assign amttrunc = Amt; // shift amount
|
|
// end
|
|
|
|
always_comb // funnel mux
|
|
if (Right)
|
|
if (Arith) z = {{WIDTH-1{A[WIDTH-1]}}, A};
|
|
else z = {{WIDTH-1{1'b0}}, A};
|
|
else z = {A, {WIDTH-1{1'b0}}};
|
|
assign amttrunc = Amt; // shift amount
|
|
|
|
// opposite offset for right shfits
|
|
assign offset = Right ? amttrunc : ~amttrunc;
|
|
|
|
// funnel operation
|
|
assign zshift = z >> offset;
|
|
assign Y = zshift[WIDTH-1:0];
|
|
endmodule
|
|
|
|
// module ppa_shifter_8 #(parameter WIDTH=8) (
|
|
// input logic [WIDTH-1:0] A,
|
|
// input logic [$clog2(WIDTH)-1:0] Amt,
|
|
// input logic Right, Arith, W64,
|
|
// output logic [WIDTH-1:0] Y);
|
|
|
|
// ppa_shifter #(WIDTH) sh (.*);
|
|
// endmodule
|
|
|
|
// module ppa_shifter_16 #(parameter WIDTH=16) (
|
|
// input logic [WIDTH-1:0] A,
|
|
// input logic [$clog2(WIDTH)-1:0] Amt,
|
|
// input logic Right, Arith, W64,
|
|
// output logic [WIDTH-1:0] Y);
|
|
|
|
// ppa_shifter #(WIDTH) sh (.*);
|
|
// endmodule
|
|
|
|
// module ppa_shifter_32 #(parameter WIDTH=32) (
|
|
// input logic [WIDTH-1:0] A,
|
|
// input logic [$clog2(WIDTH)-1:0] Amt,
|
|
// input logic Right, Arith, W64,
|
|
// output logic [WIDTH-1:0] Y);
|
|
|
|
// ppa_shifter #(WIDTH) sh (.*);
|
|
// endmodule
|
|
|
|
// module ppa_shifter_64 #(parameter WIDTH=64) (
|
|
// input logic [WIDTH-1:0] A,
|
|
// input logic [$clog2(WIDTH)-1:0] Amt,
|
|
// input logic Right, Arith, W64,
|
|
// output logic [WIDTH-1:0] Y);
|
|
|
|
// ppa_shifter #(WIDTH) sh (.*);
|
|
// endmodule
|
|
|
|
// module ppa_shifter_128 #(parameter WIDTH=128) (
|
|
// input logic [WIDTH-1:0] A,
|
|
// input logic [$clog2(WIDTH)-1:0] Amt,
|
|
// input logic Right, Arith, W64,
|
|
// output logic [WIDTH-1:0] Y);
|
|
|
|
// ppa_shifter #(WIDTH) sh (.*);
|
|
// endmodule
|
|
|
|
module ppa_prioritythermometer #(parameter N = 8) (
|
|
input logic [N-1:0] a,
|
|
output logic [N-1:0] y);
|
|
|
|
// Carefully crafted so design compiler will synthesize into a fast tree structure
|
|
// Rather than linear.
|
|
|
|
// create thermometer code mask
|
|
genvar i;
|
|
assign y[0] = ~a[0];
|
|
for (i=1; i<N; i++) begin:therm
|
|
assign y[i] = y[i-1] & ~a[i];
|
|
end
|
|
endmodule
|
|
|
|
module ppa_priorityonehot #(parameter WIDTH = 8) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
logic [WIDTH-1:0] nolower;
|
|
|
|
// create thermometer code mask
|
|
ppa_prioritythermometer #(WIDTH) maskgen(.a({a[WIDTH-2:0], 1'b0}), .y(nolower));
|
|
assign y = a & nolower;
|
|
endmodule
|
|
|
|
module ppa_priorityonehot_8 #(parameter WIDTH = 8) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
logic [WIDTH-1:0] nolower;
|
|
|
|
// create thermometer code mask
|
|
ppa_priorityonehot #(WIDTH) poh (.*);
|
|
endmodule
|
|
|
|
module ppa_priorityonehot_16 #(parameter WIDTH = 16) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
logic [WIDTH-1:0] nolower;
|
|
|
|
// create thermometer code mask
|
|
ppa_priorityonehot #(WIDTH) poh (.*);
|
|
endmodule
|
|
|
|
module ppa_priorityonehot_32 #(parameter WIDTH = 32) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
logic [WIDTH-1:0] nolower;
|
|
|
|
// create thermometer code mask
|
|
ppa_priorityonehot #(WIDTH) poh (.*);
|
|
endmodule
|
|
|
|
module ppa_priorityonehot_64 #(parameter WIDTH = 64) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
logic [WIDTH-1:0] nolower;
|
|
|
|
// create thermometer code mask
|
|
ppa_priorityonehot #(WIDTH) poh (.*);
|
|
endmodule
|
|
|
|
module ppa_priorityonehot_128 #(parameter WIDTH = 128) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
logic [WIDTH-1:0] nolower;
|
|
|
|
// create thermometer code mask
|
|
ppa_priorityonehot #(WIDTH) poh (.*);
|
|
endmodule
|
|
|
|
module ppa_priorityencoder_8 #(parameter WIDTH = 8) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [$clog2(WIDTH)-1:0] y);
|
|
ppa_priorityencoder #(WIDTH) pe (.*);
|
|
endmodule
|
|
|
|
module ppa_priorityencoder_16 #(parameter WIDTH = 16) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [$clog2(WIDTH)-1:0] y);
|
|
ppa_priorityencoder #(WIDTH) pe (.*);
|
|
endmodule
|
|
|
|
module ppa_priorityencoder_32 #(parameter WIDTH = 32) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [$clog2(WIDTH)-1:0] y);
|
|
ppa_priorityencoder #(WIDTH) pe (.*);
|
|
endmodule
|
|
|
|
module ppa_priorityencoder_64 #(parameter WIDTH = 64) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [$clog2(WIDTH)-1:0] y);
|
|
ppa_priorityencoder #(WIDTH) pe (.*);
|
|
endmodule
|
|
|
|
module ppa_priorityencoder_128 #(parameter WIDTH = 128) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [$clog2(WIDTH)-1:0] y);
|
|
ppa_priorityencoder #(WIDTH) pe (.*);
|
|
endmodule
|
|
|
|
module ppa_priorityencoder #(parameter WIDTH = 8) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [$clog2(WIDTH)-1:0] y);
|
|
|
|
int i;
|
|
always_comb begin
|
|
y = 0;
|
|
for (i=0; i<WIDTH; i++) begin:pri
|
|
if (a[i]) y= i;
|
|
end
|
|
end
|
|
endmodule
|
|
|
|
module ppa_decoder_8 #(parameter WIDTH = 8) (
|
|
input logic [$clog2(WIDTH)-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
ppa_decoder #(WIDTH) dec (.*);
|
|
endmodule
|
|
|
|
module ppa_decoder_16 #(parameter WIDTH = 16) (
|
|
input logic [$clog2(WIDTH)-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
ppa_decoder #(WIDTH) dec (.*);
|
|
endmodule
|
|
|
|
module ppa_decoder_32 #(parameter WIDTH = 32) (
|
|
input logic [$clog2(WIDTH)-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
ppa_decoder #(WIDTH) dec (.*);
|
|
endmodule
|
|
|
|
module ppa_decoder_64 #(parameter WIDTH = 64) (
|
|
input logic [$clog2(WIDTH)-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
ppa_decoder #(WIDTH) dec (.*);
|
|
endmodule
|
|
|
|
module ppa_decoder_128 #(parameter WIDTH = 128) (
|
|
input logic [$clog2(WIDTH)-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
ppa_decoder #(WIDTH) dec (.*);
|
|
endmodule
|
|
|
|
module ppa_decoder #(parameter WIDTH = 8) (
|
|
input logic [$clog2(WIDTH)-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
always_comb begin
|
|
y = 0;
|
|
y[a] = 1;
|
|
end
|
|
endmodule
|
|
|
|
module ppa_mux2d_1 #(parameter WIDTH = 1) (
|
|
input logic [WIDTH-1:0] d0, d1,
|
|
input logic s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s ? d1 : d0;
|
|
endmodule
|
|
|
|
module ppa_mux4d_1 #(parameter WIDTH = 1) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3,
|
|
input logic [1:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
|
|
endmodule
|
|
|
|
module ppa_mux8d_1 #(parameter WIDTH = 1) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
|
|
input logic [2:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[2] ? (s[1] ? (s[0] ? d5 : d4) : (s[0] ? d6 : d7)) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
|
|
endmodule
|
|
|
|
module ppa_mux2_1 #(parameter WIDTH = 1) (
|
|
input logic [WIDTH-1:0] d0, d1,
|
|
input logic s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s ? d1 : d0;
|
|
endmodule
|
|
|
|
module ppa_mux4_1 #(parameter WIDTH = 1) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3,
|
|
input logic [1:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
|
|
endmodule
|
|
|
|
module ppa_mux8_1 #(parameter WIDTH = 1) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
|
|
input logic [2:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[2] ? (s[1] ? (s[0] ? d5 : d4) : (s[0] ? d6 : d7)) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
|
|
endmodule
|
|
|
|
module ppa_mux2_8 #(parameter WIDTH = 8) (
|
|
input logic [WIDTH-1:0] d0, d1,
|
|
input logic s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s ? d1 : d0;
|
|
endmodule
|
|
|
|
module ppa_mux4_8 #(parameter WIDTH = 8) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3,
|
|
input logic [1:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
|
|
endmodule
|
|
|
|
module ppa_mux8_8 #(parameter WIDTH = 8) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
|
|
input logic [2:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[2] ? (s[1] ? (s[0] ? d5 : d4) : (s[0] ? d6 : d7)) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
|
|
endmodule
|
|
|
|
module ppa_mux2_16 #(parameter WIDTH = 16) (
|
|
input logic [WIDTH-1:0] d0, d1,
|
|
input logic s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s ? d1 : d0;
|
|
endmodule
|
|
|
|
module ppa_mux4_16 #(parameter WIDTH = 16) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3,
|
|
input logic [1:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
|
|
endmodule
|
|
|
|
module ppa_mux8_16 #(parameter WIDTH = 16) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
|
|
input logic [2:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[2] ? (s[1] ? (s[0] ? d5 : d4) : (s[0] ? d6 : d7)) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
|
|
endmodule
|
|
|
|
module ppa_mux2_32 #(parameter WIDTH = 32) (
|
|
input logic [WIDTH-1:0] d0, d1,
|
|
input logic s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s ? d1 : d0;
|
|
endmodule
|
|
|
|
module ppa_mux4_32 #(parameter WIDTH = 32) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3,
|
|
input logic [1:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
|
|
endmodule
|
|
|
|
module ppa_mux8_32 #(parameter WIDTH = 32) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
|
|
input logic [2:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[2] ? (s[1] ? (s[0] ? d5 : d4) : (s[0] ? d6 : d7)) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
|
|
endmodule
|
|
|
|
module ppa_mux2_64 #(parameter WIDTH = 64) (
|
|
input logic [WIDTH-1:0] d0, d1,
|
|
input logic s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s ? d1 : d0;
|
|
endmodule
|
|
|
|
module ppa_mux4_64 #(parameter WIDTH = 64) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3,
|
|
input logic [1:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
|
|
endmodule
|
|
|
|
module ppa_mux8_64 #(parameter WIDTH = 64) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
|
|
input logic [2:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[2] ? (s[1] ? (s[0] ? d5 : d4) : (s[0] ? d6 : d7)) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
|
|
endmodule
|
|
|
|
module ppa_mux2_128 #(parameter WIDTH = 128) (
|
|
input logic [WIDTH-1:0] d0, d1,
|
|
input logic s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s ? d1 : d0;
|
|
endmodule
|
|
|
|
module ppa_mux4_128 #(parameter WIDTH = 128) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3,
|
|
input logic [1:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0);
|
|
endmodule
|
|
|
|
module ppa_mux8_128 #(parameter WIDTH = 128) (
|
|
input logic [WIDTH-1:0] d0, d1, d2, d3, d4, d5, d6, d7,
|
|
input logic [2:0] s,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = s[2] ? (s[1] ? (s[0] ? d5 : d4) : (s[0] ? d6 : d7)) : (s[1] ? (s[0] ? d3 : d2) : (s[0] ? d1 : d0));
|
|
endmodule
|
|
|
|
// *** some way to express data-critical inputs
|
|
|
|
module ppa_flop #(parameter WIDTH = 8) (
|
|
input logic clk,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
always_ff @(posedge clk)
|
|
q <= #1 d;
|
|
endmodule
|
|
|
|
module ppa_flop_8 #(parameter WIDTH = 8) (
|
|
input logic clk,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flop #(WIDTH) f1(clk, d, q1);
|
|
ppa_flop #(WIDTH) f2(clk, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flop_16 #(parameter WIDTH = 16) (
|
|
input logic clk,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flop #(WIDTH) f1(clk, d, q1);
|
|
ppa_flop #(WIDTH) f2(clk, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flop_32 #(parameter WIDTH = 32) (
|
|
input logic clk,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flop #(WIDTH) f1(clk, d, q1);
|
|
ppa_flop #(WIDTH) f2(clk, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flop_64 #(parameter WIDTH = 64) (
|
|
input logic clk,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flop #(WIDTH) f1(clk, d, q1);
|
|
ppa_flop #(WIDTH) f2(clk, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flop_128 #(parameter WIDTH = 128) (
|
|
input logic clk,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flop #(WIDTH) f1(clk, d, q1);
|
|
ppa_flop #(WIDTH) f2(clk, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flopr #(parameter WIDTH = 8) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
always_ff @(posedge clk)
|
|
if (reset) q <= #1 0;
|
|
else q <= #1 d;
|
|
endmodule
|
|
|
|
module ppa_flopr_8 #(parameter WIDTH = 8) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flopr #(WIDTH) f1(clk, reset, d, q1);
|
|
ppa_flopr #(WIDTH) f2(clk, reset, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flopr_16 #(parameter WIDTH = 16) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flopr #(WIDTH) f1(clk, reset, d, q1);
|
|
ppa_flopr #(WIDTH) f2(clk, reset, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flopr_32 #(parameter WIDTH = 32) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flopr #(WIDTH) f1(clk, reset, d, q1);
|
|
ppa_flopr #(WIDTH) f2(clk, reset, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flopr_64 #(parameter WIDTH = 64) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flopr #(WIDTH) f1(clk, reset, d, q1);
|
|
ppa_flopr #(WIDTH) f2(clk, reset, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flopr_128 #(parameter WIDTH = 128) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flopr #(WIDTH) f1(clk, reset, d, q1);
|
|
ppa_flopr #(WIDTH) f2(clk, reset, q1, q);
|
|
endmodule
|
|
|
|
module ppa_floprasync #(parameter WIDTH = 8) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
always_ff @(posedge clk or posedge reset)
|
|
if (reset) q <= #1 0;
|
|
else q <= #1 d;
|
|
endmodule
|
|
|
|
module ppa_floprasync_8 #(parameter WIDTH = 8) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_floprasync #(WIDTH) f1(clk, reset, d, q1);
|
|
ppa_floprasync #(WIDTH) f2(clk, reset, q1, q);
|
|
endmodule
|
|
|
|
module ppa_floprasync_16 #(parameter WIDTH = 16) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_floprasync #(WIDTH) f1(clk, reset, d, q1);
|
|
ppa_floprasync #(WIDTH) f2(clk, reset, q1, q);
|
|
endmodule
|
|
|
|
module ppa_floprasync_32 #(parameter WIDTH = 32) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_floprasync #(WIDTH) f1(clk, reset, d, q1);
|
|
ppa_floprasync #(WIDTH) f2(clk, reset, q1, q);
|
|
endmodule
|
|
|
|
module ppa_floprasync_64 #(parameter WIDTH = 64) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_floprasync #(WIDTH) f1(clk, reset, d, q1);
|
|
ppa_floprasync #(WIDTH) f2(clk, reset, q1, q);
|
|
endmodule
|
|
|
|
module ppa_floprasync_128 #(parameter WIDTH = 128) (
|
|
input logic clk, reset,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_floprasync #(WIDTH) f1(clk, reset, d, q1);
|
|
ppa_floprasync #(WIDTH) f2(clk, reset, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flopenr #(parameter WIDTH = 8) (
|
|
input logic clk, reset, en,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
always_ff @(posedge clk)
|
|
if (reset) q <= #1 0;
|
|
else if (en) q <= #1 d;
|
|
endmodule
|
|
|
|
module ppa_flopenr_8 #(parameter WIDTH = 8) (
|
|
input logic clk, reset, en,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flopenr #(WIDTH) f1(clk, reset, en, d, q1);
|
|
ppa_flopenr #(WIDTH) f2(clk, reset, en, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flopenr_16 #(parameter WIDTH = 16) (
|
|
input logic clk, reset, en,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flopenr #(WIDTH) f1(clk, reset, en, d, q1);
|
|
ppa_flopenr #(WIDTH) f2(clk, reset, en, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flopenr_32 #(parameter WIDTH = 32) (
|
|
input logic clk, reset, en,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flopenr #(WIDTH) f1(clk, reset, en, d, q1);
|
|
ppa_flopenr #(WIDTH) f2(clk, reset, en, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flopenr_64 #(parameter WIDTH = 64) (
|
|
input logic clk, reset, en,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flopenr #(WIDTH) f1(clk, reset, en, d, q1);
|
|
ppa_flopenr #(WIDTH) f2(clk, reset, en, q1, q);
|
|
endmodule
|
|
|
|
module ppa_flopenr_128 #(parameter WIDTH = 128) (
|
|
input logic clk, reset, en,
|
|
input logic [WIDTH-1:0] d,
|
|
output logic [WIDTH-1:0] q);
|
|
|
|
logic [WIDTH-1:0] q1;
|
|
|
|
ppa_flopenr #(WIDTH) f1(clk, reset, en, d, q1);
|
|
ppa_flopenr #(WIDTH) f2(clk, reset, en, q1, q);
|
|
endmodule
|
|
|
|
module ppa_csa_8 #(parameter WIDTH = 8) (
|
|
input logic [WIDTH-1:0] a, b, c,
|
|
output logic [WIDTH-1:0] sum, carry);
|
|
|
|
assign sum = a ^ b ^ c;
|
|
assign carry = (a & (b | c)) | (b & c);
|
|
|
|
endmodule
|
|
|
|
module ppa_csa_16 #(parameter WIDTH = 16) (
|
|
input logic [WIDTH-1:0] a, b, c,
|
|
output logic [WIDTH-1:0] sum, carry);
|
|
|
|
assign sum = a ^ b ^ c;
|
|
assign carry = (a & (b | c)) | (b & c);
|
|
|
|
endmodule
|
|
|
|
module ppa_csa_32 #(parameter WIDTH = 32) (
|
|
input logic [WIDTH-1:0] a, b, c,
|
|
output logic [WIDTH-1:0] sum, carry);
|
|
|
|
assign sum = a ^ b ^ c;
|
|
assign carry = (a & (b | c)) | (b & c);
|
|
|
|
endmodule
|
|
|
|
module ppa_csa_64 #(parameter WIDTH = 64) (
|
|
input logic [WIDTH-1:0] a, b, c,
|
|
output logic [WIDTH-1:0] sum, carry);
|
|
|
|
assign sum = a ^ b ^ c;
|
|
assign carry = (a & (b | c)) | (b & c);
|
|
|
|
endmodule
|
|
|
|
module ppa_csa_128 #(parameter WIDTH = 128) (
|
|
input logic [WIDTH-1:0] a, b, c,
|
|
output logic [WIDTH-1:0] sum, carry);
|
|
|
|
assign sum = a ^ b ^ c;
|
|
assign carry = (a & (b | c)) | (b & c);
|
|
|
|
endmodule
|
|
|
|
module ppa_inv_1 #(parameter WIDTH = 1) (
|
|
input logic [WIDTH-1:0] a,
|
|
output logic [WIDTH-1:0] y);
|
|
|
|
assign y = ~a;
|
|
endmodule |