cvw/pipelined/src/privileged/csrsr.sv
2022-02-03 01:08:34 +00:00

194 lines
10 KiB
Systemverilog

///////////////////////////////////////////
// crsr.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Status register
// See RISC-V Privileged Mode Specification 20190608
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// MIT LICENSE
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
// OR OTHER DEALINGS IN THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////////////////////
`include "wally-config.vh"
module csrsr (
input logic clk, reset, StallW,
input logic WriteMSTATUSM, WriteSSTATUSM, WriteUSTATUSM,
input logic TrapM, FRegWriteM,
input logic [1:0] NextPrivilegeModeM, PrivilegeModeW,
input logic mretM, sretM, uretM,
input logic WriteFRMM, WriteFFLAGSM,
input logic [`XLEN-1:0] CSRWriteValM,
output logic [`XLEN-1:0] MSTATUS_REGW, SSTATUS_REGW, USTATUS_REGW,
output logic [1:0] STATUS_MPP,
output logic STATUS_SPP, STATUS_TSR, STATUS_TW,
output logic STATUS_MIE, STATUS_SIE,
output logic STATUS_MXR, STATUS_SUM,
output logic STATUS_MPRV, STATUS_TVM
);
logic STATUS_SD, STATUS_TW_INT, STATUS_TSR_INT, STATUS_TVM_INT, STATUS_MXR_INT, STATUS_SUM_INT, STATUS_MPRV_INT;
logic [1:0] STATUS_SXL, STATUS_UXL, STATUS_XS, STATUS_FS, STATUS_FS_INT, STATUS_MPP_NEXT;
logic STATUS_MPIE, STATUS_SPIE, STATUS_UPIE, STATUS_UIE;
// STATUS REGISTER FIELD
// See Privileged Spec Section 3.1.6
// Lower privilege status registers are a subset of the full status register
// *** consider adding MBE, SBE, UBE fields later from 20210108 draft spec
if (`XLEN==64) begin: csrsr64 // RV64
assign MSTATUS_REGW = {STATUS_SD, 27'b0, STATUS_SXL, STATUS_UXL, 9'b0,
STATUS_TSR, STATUS_TW, STATUS_TVM, STATUS_MXR, STATUS_SUM, STATUS_MPRV,
STATUS_XS, STATUS_FS, STATUS_MPP, 2'b0,
STATUS_SPP, STATUS_MPIE, 1'b0, STATUS_SPIE, STATUS_UPIE,
STATUS_MIE, 1'b0, STATUS_SIE, STATUS_UIE};
assign SSTATUS_REGW = {STATUS_SD, /*27'b0, */ 29'b0, /*STATUS_SXL, */ STATUS_UXL, /*9'b0, */ 12'b0,
/*STATUS_TSR, STATUS_TW, STATUS_TVM, */STATUS_MXR, STATUS_SUM, /* STATUS_MPRV, */ 1'b0,
STATUS_XS, STATUS_FS, /*STATUS_MPP, 2'b0*/ 4'b0,
STATUS_SPP, /*STATUS_MPIE, 1'b0*/ 2'b0, STATUS_SPIE, STATUS_UPIE,
/*STATUS_MIE, 1'b0*/ 2'b0, STATUS_SIE, STATUS_UIE};
assign USTATUS_REGW = {/*STATUS_SD, */ 59'b0, /*STATUS_SXL, STATUS_UXL, 9'b0, */
/*STATUS_TSR, STATUS_TW, STATUS_TVM, STATUS_MXR, STATUS_SUM, STATUS_MPRV, , 1'b0,*/
/* STATUS_XS, STATUS_FS, /*STATUS_MPP, 8'b0, */
/*STATUS_SPP, STATUS_MPIE, 1'b0 2'b0, STATUS_SPIE,*/ STATUS_UPIE,
/*STATUS_MIE, 1'b0*/ 3'b0, /*STATUS_SIE, */STATUS_UIE};
end else begin: csrsr32 // RV32
assign MSTATUS_REGW = {STATUS_SD, 8'b0,
STATUS_TSR, STATUS_TW, STATUS_TVM, STATUS_MXR, STATUS_SUM, STATUS_MPRV,
STATUS_XS, STATUS_FS, STATUS_MPP, 2'b0,
STATUS_SPP, STATUS_MPIE, 1'b0, STATUS_SPIE, STATUS_UPIE, STATUS_MIE, 1'b0, STATUS_SIE, STATUS_UIE};
assign SSTATUS_REGW = {STATUS_SD, 11'b0,
/*STATUS_TSR, STATUS_TW, STATUS_TVM, */STATUS_MXR, STATUS_SUM, /* STATUS_MPRV, */ 1'b0,
STATUS_XS, STATUS_FS, /*STATUS_MPP, 2'b0*/ 4'b0,
STATUS_SPP, /*STATUS_MPIE, 1'b0*/ 2'b0, STATUS_SPIE, STATUS_UPIE,
/*STATUS_MIE, 1'b0*/ 2'b0, STATUS_SIE, STATUS_UIE};
assign USTATUS_REGW = {/*STATUS_SD, */ 27'b0, /*STATUS_SXL, STATUS_UXL, 9'b0, */
/*STATUS_TSR, STATUS_TW, STATUS_TVM, STATUS_MXR, STATUS_SUM, STATUS_MPRV, , 1'b0,*/
/*STATUS_XS, STATUS_FS, STATUS_MPP, 8'b0, */
/*STATUS_SPP, STATUS_MPIE, 1'b0 2'b0, STATUS_SPIE,*/ STATUS_UPIE,
/*STATUS_MIE, 1'b0*/ 3'b0, /*STATUS_SIE, */STATUS_UIE};
end
// harwired STATUS bits
assign STATUS_TSR = `S_SUPPORTED & STATUS_TSR_INT; // override reigster with 0 if supervisor mode not supported
assign STATUS_TW = (`S_SUPPORTED | `U_SUPPORTED) & STATUS_TW_INT; // override reigster with 0 if only machine mode supported
assign STATUS_TVM = `S_SUPPORTED & STATUS_TVM_INT; // override reigster with 0 if supervisor mode not supported
assign STATUS_MXR = `S_SUPPORTED & STATUS_MXR_INT; // override reigster with 0 if supervisor mode not supported
// SXL and UXL bits only matter for RV64. Set to 10 for RV64 if mode is supported, or 0 if not
assign STATUS_SXL = `S_SUPPORTED & ~`QEMU ? 2'b10 : 2'b00; // 10 if supervisor mode supported
assign STATUS_UXL = `U_SUPPORTED & ~`QEMU ? 2'b10 : 2'b00; // 10 if user mode supported
assign STATUS_SUM = `S_SUPPORTED & `VIRTMEM_SUPPORTED & STATUS_SUM_INT; // override reigster with 0 if supervisor mode not supported
assign STATUS_MPRV = `U_SUPPORTED & STATUS_MPRV_INT; // override with 0 if user mode not supported
assign STATUS_FS = (`S_SUPPORTED & (`F_SUPPORTED | `D_SUPPORTED)) ? STATUS_FS_INT : 2'b00; // off if no FP
assign STATUS_SD = (STATUS_FS == 2'b11) | (STATUS_XS == 2'b11); // dirty state logic
assign STATUS_XS = 2'b00; // No additional user-mode state to be dirty
always_comb
if (CSRWriteValM[12:11] == `U_MODE & `U_SUPPORTED) STATUS_MPP_NEXT = `U_MODE;
else if (CSRWriteValM[12:11] == `S_MODE & `S_SUPPORTED) STATUS_MPP_NEXT = `S_MODE;
else STATUS_MPP_NEXT = `M_MODE;
// registers for STATUS bits
// complex register with reset, write enable, and the ability to update other bits in certain cases
always_ff @(posedge clk) //, posedge reset)
if (reset) begin
STATUS_TSR_INT <= #1 0;
STATUS_TW_INT <= #1 0;
STATUS_TVM_INT <= #1 0;
STATUS_MXR_INT <= #1 0;
STATUS_SUM_INT <= #1 0;
STATUS_MPRV_INT <= #1 0; // Per Priv 3.3
STATUS_FS_INT <= #1 0;
STATUS_MPP <= #1 0; //`M_MODE;
STATUS_SPP <= #1 0; //1'b1;
STATUS_MPIE <= #1 0; //1;
STATUS_SPIE <= #1 0; //`S_SUPPORTED;
STATUS_UPIE <= #1 0; // `U_SUPPORTED;
STATUS_MIE <= #1 0; // Per Priv 3.3
STATUS_SIE <= #1 0; //`S_SUPPORTED;
STATUS_UIE <= #1 0; //`U_SUPPORTED;
end else if (~StallW) begin
if (FRegWriteM | WriteFRMM | WriteFFLAGSM) STATUS_FS_INT <= #12'b11; // mark Float State dirty *** this should happen in M stage, be part of if/else;
if (TrapM) begin
// Update interrupt enables per Privileged Spec p. 21
// y = PrivilegeModeW
// x = NextPrivilegeModeM
// Modes: 11 = Machine, 01 = Supervisor, 00 = User
if (NextPrivilegeModeM == `M_MODE) begin
STATUS_MPIE <= #1 STATUS_MIE;
STATUS_MIE <= #1 0;
STATUS_MPP <= #1 PrivilegeModeW;
end else if (NextPrivilegeModeM == `S_MODE) begin
STATUS_SPIE <= #1 STATUS_SIE;
STATUS_SIE <= #1 0;
STATUS_SPP <= #1 PrivilegeModeW[0]; // *** seems to disagree with P. 56
end else begin // user mode
STATUS_UPIE <= #1 STATUS_UIE;
STATUS_UIE <= #1 0;
end
end else if (mretM) begin // Privileged 3.1.6.1
STATUS_MIE <= #1 STATUS_MPIE;
STATUS_MPIE <= #1 1;
STATUS_MPP <= #1 `U_SUPPORTED ? `U_MODE : `M_MODE; // per spec, not sure why
STATUS_MPRV_INT <= #1 0; // per 20210108 draft spec
end else if (sretM) begin
STATUS_SIE <= #1 STATUS_SPIE;
STATUS_SPIE <= #1 `S_SUPPORTED;
STATUS_SPP <= #1 0; // Privileged 4.1.1
STATUS_MPRV_INT <= #1 0; // per 20210108 draft spec
end else if (uretM) begin
STATUS_UIE <= #1 STATUS_UPIE;
STATUS_UPIE <= #1 `U_SUPPORTED;
end else if (WriteMSTATUSM) begin
STATUS_TSR_INT <= #1 CSRWriteValM[22];
STATUS_TW_INT <= #1 CSRWriteValM[21];
STATUS_TVM_INT <= #1 CSRWriteValM[20];
STATUS_MXR_INT <= #1 CSRWriteValM[19];
STATUS_SUM_INT <= #1 CSRWriteValM[18];
STATUS_MPRV_INT <= #1 CSRWriteValM[17];
STATUS_FS_INT <= #1 CSRWriteValM[14:13];
STATUS_MPP <= #1 STATUS_MPP_NEXT;
STATUS_SPP <= #1 `S_SUPPORTED & CSRWriteValM[8];
STATUS_MPIE <= #1 CSRWriteValM[7];
STATUS_SPIE <= #1 `S_SUPPORTED & CSRWriteValM[5];
STATUS_UPIE <= #1 `U_SUPPORTED & CSRWriteValM[4];
STATUS_MIE <= #1 CSRWriteValM[3];
STATUS_SIE <= #1 `S_SUPPORTED & CSRWriteValM[1];
STATUS_UIE <= #1 `U_SUPPORTED & CSRWriteValM[0];
end else if (WriteSSTATUSM) begin // write a subset of the STATUS bits
STATUS_MXR_INT <= #1 CSRWriteValM[19];
STATUS_SUM_INT <= #1 CSRWriteValM[18];
STATUS_FS_INT <= #1 CSRWriteValM[14:13];
STATUS_SPP <= #1 `S_SUPPORTED & CSRWriteValM[8];
STATUS_SPIE <= #1 `S_SUPPORTED & CSRWriteValM[5];
STATUS_UPIE <= #1 `U_SUPPORTED & CSRWriteValM[4];
STATUS_SIE <= #1 `S_SUPPORTED & CSRWriteValM[1];
STATUS_UIE <= #1 `U_SUPPORTED & CSRWriteValM[0];
end else if (WriteUSTATUSM) begin // write a subset of the STATUS bits
STATUS_FS_INT <= #1 CSRWriteValM[14:13];
STATUS_UPIE <= #1 `U_SUPPORTED & CSRWriteValM[4];
STATUS_UIE <= #1 `U_SUPPORTED & CSRWriteValM[0];
end
end
endmodule