cvw/src/mmu/mmu.sv
Harshini Srinath 5a6a932b7e Update mmu.sv
Program clean up
2023-06-12 18:36:04 -07:00

145 lines
8.4 KiB
Systemverilog

///////////////////////////////////////////
// mmu.sv
//
// Written: david_harris@hmc.edu and kmacsaigoren@hmc.edu 4 June 2021
// Modified:
//
// Purpose: Memory management unit, including TLB, PMA, PMP
//
// Documentation: RISC-V System on Chip Design Chapter 8
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
module mmu import cvw::*; #(parameter cvw_t P,
parameter TLB_ENTRIES = 8, IMMU = 0) (
input logic clk, reset,
input logic [P.XLEN-1:0] SATP_REGW, // Current value of satp CSR (from privileged unit)
input logic STATUS_MXR, // Status CSR: make executable page readable
input logic STATUS_SUM, // Status CSR: Supervisor access to user memory
input logic STATUS_MPRV, // Status CSR: modify machine privilege
input logic [1:0] STATUS_MPP, // Status CSR: previous machine privilege level
input logic [1:0] PrivilegeModeW, // Current privilege level of the processeor
input logic DisableTranslation, // virtual address translation disabled during D$ flush and HPTW walk that use physical addresses
input logic [P.XLEN+1:0] VAdr, // virtual/physical address from IEU or physical address from HPTW
input logic [1:0] Size, // access size: 00 = 8 bits, 01 = 16 bits, 10 = 32 bits , 11 = 64 bits
input logic [P.XLEN-1:0] PTE, // page table entry
input logic [1:0] PageTypeWriteVal, // page type
input logic TLBWrite, // write TLB entry
input logic TLBFlush, // Invalidate all TLB entries
output logic [P.PA_BITS-1:0] PhysicalAddress, // PAdr when no translation, or translated VAdr (TLBPAdr) when there is translation
output logic TLBMiss, // Miss TLB
output logic Cacheable, // PMA indicates memory address is cachable
output logic Idempotent, // PMA indicates memory address is idempotent
output logic SelTIM, // Select a tightly integrated memory
// Faults
output logic InstrAccessFaultF, LoadAccessFaultM, StoreAmoAccessFaultM, // access fault sources
output logic InstrPageFaultF, LoadPageFaultM, StoreAmoPageFaultM, // page fault sources
output logic UpdateDA, // page fault due to setting dirty or access bit
output logic LoadMisalignedFaultM, StoreAmoMisalignedFaultM, // misaligned fault sources
// PMA checker signals
input logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM, // access type
input var logic [7:0] PMPCFG_ARRAY_REGW[P.PMP_ENTRIES-1:0], // PMP configuration
input var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW[P.PMP_ENTRIES-1:0] // PMP addresses
);
logic [P.PA_BITS-1:0] TLBPAdr; // physical address for TLB
logic PMAInstrAccessFaultF; // Instruction access fault from PMA
logic PMPInstrAccessFaultF; // Instruction access fault from PMP
logic PMALoadAccessFaultM; // Load access fault from PMA
logic PMPLoadAccessFaultM; // Load access fault from PMP
logic PMAStoreAmoAccessFaultM; // Store or AMO access fault from PMA
logic PMPStoreAmoAccessFaultM; // Store or AMO access fault from PMP
logic DataMisalignedM; // load or store misaligned
logic Translate; // Translation occurs when virtual memory is active and DisableTranslation is off
logic TLBHit; // Hit in TLB
logic TLBPageFault; // Page fault from TLB
logic ReadNoAmoAccessM; // Read that is not part of atomic operation causes Load faults. Otherwise StoreAmo faults
// only instantiate TLB if Virtual Memory is supported
if (P.VIRTMEM_SUPPORTED) begin:tlb
logic ReadAccess, WriteAccess;
assign ReadAccess = ExecuteAccessF | ReadAccessM; // execute also acts as a TLB read. Execute and Read are never active for the same MMU, so safe to mix pipestages
assign WriteAccess = WriteAccessM;
tlb #(.P(P), .TLB_ENTRIES(TLB_ENTRIES), .ITLB(IMMU)) tlb(
.clk, .reset,
.SATP_MODE(SATP_REGW[P.XLEN-1:P.XLEN-P.SVMODE_BITS]),
.SATP_ASID(SATP_REGW[P.ASID_BASE+P.ASID_BITS-1:P.ASID_BASE]),
.VAdr(VAdr[P.XLEN-1:0]), .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP,
.PrivilegeModeW, .ReadAccess, .WriteAccess,
.DisableTranslation, .PTE, .PageTypeWriteVal,
.TLBWrite, .TLBFlush, .TLBPAdr, .TLBMiss, .TLBHit,
.Translate, .TLBPageFault, .UpdateDA);
end else begin:tlb // just pass address through as physical
assign Translate = 0;
assign TLBMiss = 0;
assign TLBHit = 1; // *** is this necessary
assign TLBPageFault = 0;
end
// If translation is occuring, select translated physical address from TLB
// the lower 12 bits are the page offset. These are never changed from the orginal
// non translated address.
mux2 #(P.PA_BITS-12) addressmux(VAdr[P.PA_BITS-1:12], TLBPAdr[P.PA_BITS-1:12], Translate, PhysicalAddress[P.PA_BITS-1:12]);
assign PhysicalAddress[11:0] = VAdr[11:0];
///////////////////////////////////////////
// Check physical memory accesses
///////////////////////////////////////////
pmachecker #(P) pmachecker(.PhysicalAddress, .Size,
.AtomicAccessM, .ExecuteAccessF, .WriteAccessM, .ReadAccessM,
.Cacheable, .Idempotent, .SelTIM,
.PMAInstrAccessFaultF, .PMALoadAccessFaultM, .PMAStoreAmoAccessFaultM);
if (P.PMP_ENTRIES > 0) begin : pmp
pmpchecker #(P) pmpchecker(.PhysicalAddress, .PrivilegeModeW,
.PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW,
.ExecuteAccessF, .WriteAccessM, .ReadAccessM,
.PMPInstrAccessFaultF, .PMPLoadAccessFaultM, .PMPStoreAmoAccessFaultM);
end else begin
assign PMPInstrAccessFaultF = 0;
assign PMPStoreAmoAccessFaultM = 0;
assign PMPLoadAccessFaultM = 0;
end
assign ReadNoAmoAccessM = ReadAccessM & ~WriteAccessM;// AMO causes StoreAmo rather than Load fault
// Access faults
// If TLB miss and translating we want to not have faults from the PMA and PMP checkers.
assign InstrAccessFaultF = (PMAInstrAccessFaultF | PMPInstrAccessFaultF) & ~TLBMiss;
assign LoadAccessFaultM = (PMALoadAccessFaultM | PMPLoadAccessFaultM) & ~TLBMiss;
assign StoreAmoAccessFaultM = (PMAStoreAmoAccessFaultM | PMPStoreAmoAccessFaultM) & ~TLBMiss;
// Misaligned faults
always_comb // exclusion-tag: immu-wordaccess
case(Size[1:0])
2'b00: DataMisalignedM = 0; // lb, sb, lbu
2'b01: DataMisalignedM = VAdr[0]; // lh, sh, lhu
2'b10: DataMisalignedM = VAdr[1] | VAdr[0]; // lw, sw, flw, fsw, lwu
2'b11: DataMisalignedM = |VAdr[2:0]; // ld, sd, fld, fsd
endcase
assign LoadMisalignedFaultM = DataMisalignedM & ReadNoAmoAccessM;
assign StoreAmoMisalignedFaultM = DataMisalignedM & WriteAccessM;
// Specify which type of page fault is occurring
assign InstrPageFaultF = TLBPageFault & ExecuteAccessF;
assign LoadPageFaultM = TLBPageFault & ReadNoAmoAccessM;
assign StoreAmoPageFaultM = TLBPageFault & WriteAccessM;
endmodule