mirror of
				https://github.com/openhwgroup/cvw
				synced 2025-02-11 06:05:49 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			356 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Systemverilog
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Systemverilog
		
	
	
	
	
	
///////////////////////////////////////////////////////
 | 
						|
// srt.sv                                            //
 | 
						|
//                                                   //
 | 
						|
// Written 10/31/96 by David Harris harrisd@leland   //
 | 
						|
// Updated 10/19/21 David_Harris@hmc.edu             //
 | 
						|
//                                                   //
 | 
						|
// This file models a simple Radix 2 SRT divider.    //
 | 
						|
//                                                   //
 | 
						|
///////////////////////////////////////////////////////
 | 
						|
 | 
						|
// This Verilog file models a radix 2 SRT divider which
 | 
						|
// produces one quotient digit per cycle.  The divider
 | 
						|
// keeps the partial remainder in carry-save form.
 | 
						|
 
 | 
						|
/////////
 | 
						|
// srt //
 | 
						|
/////////
 | 
						|
module srt(input  logic clk, 
 | 
						|
           input  logic req, 
 | 
						|
           input  logic sqrt,  // 1 to compute sqrt(a), 0 to compute a/b
 | 
						|
           input  logic [51:0] a, b, 
 | 
						|
           output logic [54:0] rp, rm);
 | 
						|
 
 | 
						|
  // A simple Radix 2 SRT divider/sqrt
 | 
						|
 | 
						|
  
 | 
						|
  // Internal signals
 | 
						|
 | 
						|
  logic   [55:0] ps, pc;     // partial remainder in carry-save form
 | 
						|
  logic   [55:0] d;          // divisor
 | 
						|
  logic   [55:0] psa, pca;   // partial remainder result of csa
 | 
						|
  logic   [55:0] psn, pcn;   // partial remainder for next cycle
 | 
						|
  logic   [55:0] dn;         // divisor for next cycle
 | 
						|
  logic   [55:0] dsel;       // selected divisor multiple
 | 
						|
  logic          qp, qz, qm; // quotient is +1, 0, or -1
 | 
						|
  logic   [55:0] d_b;        // inverse of divisor
 | 
						|
 
 | 
						|
  // Top Muxes and Registers
 | 
						|
  // When start is asserted, the inputs are loaded into the divider.
 | 
						|
  // Otherwise, the divisor is retained and the partial remainder
 | 
						|
  // is fed back for the next iteration.
 | 
						|
  mux2 psmux({psa[54:0], 1'b0}, {4'b0001, a}, req, psn);
 | 
						|
  flop psflop(clk, psn, ps);
 | 
						|
  mux2 pcmux({pca[54:0], 1'b0}, 56'b0, req, pcn);
 | 
						|
  flop pcflop(clk, pcn, pc);
 | 
						|
  mux2 dmux(d, {4'b0001, b}, req, dn);
 | 
						|
  flop dflop(clk, dn, d);
 | 
						|
 | 
						|
  // Quotient Selection logic
 | 
						|
  // Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm)
 | 
						|
  // Accumulate quotient digits in a shift register
 | 
						|
  qsel qsel(ps[55:52], pc[55:52], qp, qz, qm);
 | 
						|
  qacc qacc(clk, req, qp, qz, qm, rp, rm);
 | 
						|
 | 
						|
  // Divisor Selection logic
 | 
						|
  inv dinv(d, d_b);
 | 
						|
  mux3 divisorsel(d_b, 56'b0, d, qp, qz, qm, dsel);
 | 
						|
 | 
						|
  // Partial Product Generation
 | 
						|
  csa csa(ps, pc, dsel, qp, psa, pca);
 | 
						|
endmodule
 | 
						|
 | 
						|
//////////
 | 
						|
// mux2 //
 | 
						|
//////////
 | 
						|
module mux2(input  logic [55:0] in0, in1, 
 | 
						|
            input  logic        sel, 
 | 
						|
            output logic [55:0] out);
 | 
						|
 
 | 
						|
   assign #1 out = sel ? in1 : in0;
 | 
						|
endmodule
 | 
						|
 | 
						|
//////////
 | 
						|
// flop //
 | 
						|
//////////
 | 
						|
module flop(clk, in, out);
 | 
						|
  input 	clk;
 | 
						|
  input  [55:0] in;
 | 
						|
  output [55:0] out;
 | 
						|
 | 
						|
  logic    [55:0] state;
 | 
						|
 | 
						|
  always @(posedge clk)
 | 
						|
      state <= #1 in;
 | 
						|
 | 
						|
  assign #1 out = state;
 | 
						|
endmodule
 | 
						|
 | 
						|
//////////
 | 
						|
// qsel //
 | 
						|
//////////
 | 
						|
module qsel(input  logic [55:52] ps, pc, 
 | 
						|
            output logic         qp, qz, qm);
 | 
						|
 
 | 
						|
  logic [55:52]  p, g;
 | 
						|
  logic          magnitude, sign, cout;
 | 
						|
 | 
						|
  // The quotient selection logic is presented for simplicity, not
 | 
						|
  // for efficiency.  You can probably optimize your logic to
 | 
						|
  // select the proper divisor with less delay.
 | 
						|
 | 
						|
  // Quotient equations from EE371 lecture notes 13-20
 | 
						|
  assign p = ps ^ pc;
 | 
						|
  assign g = ps & pc;
 | 
						|
 | 
						|
  assign #1 magnitude = ~(&p[54:52]);
 | 
						|
  assign #1 cout = g[54] | (p[54] & (g[53] | p[53] & g[52]));
 | 
						|
  assign #1 sign = p[55] ^ cout;
 | 
						|
/*  assign #1 magnitude = ~((ps[54]^pc[54]) && (ps[53]^pc[53]) && 
 | 
						|
			  (ps[52]^pc[52]));
 | 
						|
  assign #1 sign = (ps[55]^pc[55])^
 | 
						|
      (ps[54] && pc[54] || ((ps[54]^pc[54]) &&
 | 
						|
			    (ps[53]&&pc[53] || ((ps[53]^pc[53]) &&
 | 
						|
						(ps[52]&&pc[52]))))); */
 | 
						|
 | 
						|
  // Produce quotient = +1, 0, or -1
 | 
						|
  assign #1 qp = magnitude && ~sign;
 | 
						|
  assign #1 qz = ~magnitude;
 | 
						|
  assign #1 qm = magnitude && sign;
 | 
						|
endmodule
 | 
						|
 | 
						|
//////////
 | 
						|
// qacc //
 | 
						|
//////////
 | 
						|
module qacc(clk, req, qp, qz, qm, rp, rm);
 | 
						|
  input 	clk;
 | 
						|
  input         req;
 | 
						|
  input 	qp;
 | 
						|
  input 	qz;
 | 
						|
  input 	qm;
 | 
						|
  output [54:0] rp;
 | 
						|
  output [54:0] rm;
 | 
						|
 | 
						|
  logic    [54:0] rp, rm; // quotient bit is +/- 1;
 | 
						|
  logic    [7:0]  count;
 | 
						|
 | 
						|
  always @(posedge clk)
 | 
						|
    begin
 | 
						|
      if (req) 
 | 
						|
	begin
 | 
						|
	  rp <= #1 0;
 | 
						|
	  rm <= #1 0;
 | 
						|
	end
 | 
						|
      else 
 | 
						|
	begin
 | 
						|
	  rp <= #1 {rp[54:0], qp};
 | 
						|
	  rm <= #1 {rm[54:0], qm};
 | 
						|
	end
 | 
						|
    end
 | 
						|
endmodule
 | 
						|
 | 
						|
/////////
 | 
						|
// inv //
 | 
						|
/////////
 | 
						|
module inv(input  logic [55:0] in, 
 | 
						|
           output logic [55:0] out);
 | 
						|
 | 
						|
  assign #1 out = ~in;
 | 
						|
endmodule
 | 
						|
 | 
						|
//////////
 | 
						|
// mux3 //
 | 
						|
//////////
 | 
						|
module mux3(in0, in1, in2, sel0, sel1, sel2, out);
 | 
						|
  input  [55:0] in0;
 | 
						|
  input  [55:0] in1;
 | 
						|
  input  [55:0] in2;
 | 
						|
  input         sel0;
 | 
						|
  input         sel1;
 | 
						|
  input         sel2;
 | 
						|
  output [55:0] out;
 | 
						|
 | 
						|
  // lazy inspection of the selects
 | 
						|
  // really we should make sure selects are mutually exclusive
 | 
						|
  assign #1 out = sel0 ? in0 : (sel1 ? in1 : in2);
 | 
						|
endmodule
 | 
						|
 | 
						|
/////////
 | 
						|
// csa //
 | 
						|
/////////
 | 
						|
module csa(in1, in2, in3, cin, out1, out2);
 | 
						|
  input  [55:0] in1;
 | 
						|
  input  [55:0] in2;
 | 
						|
  input  [55:0] in3;
 | 
						|
  input         cin;
 | 
						|
  output [55:0] out1;
 | 
						|
  output [55:0] out2;
 | 
						|
 | 
						|
  // This block adds in1, in2, in3, and cin to produce 
 | 
						|
  // a result out1 / out2 in carry-save redundant form.
 | 
						|
  // cin is just added to the least significant bit and
 | 
						|
  // is required to handle adding a negative divisor.
 | 
						|
  // Fortunately, the carry (out2) is shifted left by one
 | 
						|
  // bit, leaving room in the least significant bit to 
 | 
						|
  // insert cin.
 | 
						|
 | 
						|
  assign #1 out1 = in1 ^ in2 ^ in3;
 | 
						|
  assign #1 out2 = {in1[54:0] & (in2[54:0] | in3[54:0]) | 
 | 
						|
		    (in2[54:0] & in3[54:0]), cin};
 | 
						|
endmodule
 | 
						|
 | 
						|
//////////////
 | 
						|
// finaladd //
 | 
						|
//////////////
 | 
						|
module finaladd(rp, rm, r);
 | 
						|
  input  [54:0] rp;
 | 
						|
  input  [54:0] rm;
 | 
						|
  output [51:0] r;
 | 
						|
 | 
						|
  logic   [54:0] diff;
 | 
						|
 | 
						|
  // this magic block performs the final addition for you
 | 
						|
  // to convert the positive and negative quotient digits
 | 
						|
  // into a normalized mantissa.  It returns the 52 bit
 | 
						|
  // mantissa after shifting to guarantee a leading 1.
 | 
						|
  // You can assume this block operates in one cycle
 | 
						|
  // and do not need to budget it in your area and power
 | 
						|
  // calculations.
 | 
						|
	
 | 
						|
  // Since no rounding is performed, the result may be too 
 | 
						|
  // small by one unit in the least significant place (ulp).
 | 
						|
  // The checker ignores such an error.
 | 
						|
 | 
						|
  assign #1 diff = rp - rm;
 | 
						|
  assign #1 r = diff[54] ? diff[53:2] : diff[52:1];
 | 
						|
endmodule
 | 
						|
 | 
						|
/////////////
 | 
						|
// counter //
 | 
						|
/////////////
 | 
						|
module counter(input  logic clk, 
 | 
						|
               input  logic req, 
 | 
						|
               output logic done);
 | 
						|
 
 | 
						|
   logic    [5:0]  count;
 | 
						|
 | 
						|
  // This block of control logic sequences the divider
 | 
						|
  // through its iterations.  You may modify it if you
 | 
						|
  // build a divider which completes in fewer iterations.
 | 
						|
  // You are not responsible for the (trivial) circuit
 | 
						|
  // design of the block.
 | 
						|
 | 
						|
  always @(posedge clk)
 | 
						|
    begin
 | 
						|
      if      (count == 54) done <= #1 1;
 | 
						|
      else if (done || req) done <= #1 0;	
 | 
						|
      if (req) count <= #1 0;
 | 
						|
      else     count <= #1 count+1;
 | 
						|
    end
 | 
						|
endmodule
 | 
						|
 | 
						|
///////////
 | 
						|
// clock //
 | 
						|
///////////
 | 
						|
module clock(clk);
 | 
						|
  output clk;
 | 
						|
 
 | 
						|
  // Internal clk signal
 | 
						|
  logic clk;
 | 
						|
 
 | 
						|
endmodule
 | 
						|
 | 
						|
//////////
 | 
						|
// testbench //
 | 
						|
//////////
 | 
						|
module testbench;
 | 
						|
  logic         clk;
 | 
						|
  logic        req;
 | 
						|
  logic         done;
 | 
						|
  logic [51:0] a;
 | 
						|
  logic [51:0] b;
 | 
						|
  logic  [51:0] r;
 | 
						|
  logic [54:0] rp, rm;   // positive quotient digits
 | 
						|
 
 | 
						|
  // Test parameters
 | 
						|
  parameter MEM_SIZE = 40000;
 | 
						|
  parameter MEM_WIDTH = 52+52+52;
 | 
						|
 
 | 
						|
  `define memr  51:0
 | 
						|
  `define memb  103:52
 | 
						|
  `define mema  155:104
 | 
						|
 | 
						|
  // Test logicisters
 | 
						|
  logic [MEM_WIDTH-1:0] Tests [0:MEM_SIZE];  // Space for input file
 | 
						|
  logic [MEM_WIDTH-1:0] Vec;  // Verilog doesn't allow direct access to a
 | 
						|
                            // bit field of an array 
 | 
						|
  logic    [51:0] correctr, nextr;
 | 
						|
  integer testnum, errors;
 | 
						|
 | 
						|
  // Divider
 | 
						|
  srt  srt(clk, req, a, b, rp, rm);
 | 
						|
 | 
						|
  // Final adder converts quotient digits to 2's complement & normalizes
 | 
						|
  finaladd finaladd(rp, rm, r);
 | 
						|
 | 
						|
  // Counter
 | 
						|
  counter counter(clk, req, done);
 | 
						|
 | 
						|
 | 
						|
    initial
 | 
						|
    forever
 | 
						|
      begin
 | 
						|
        clk = 1; #17;
 | 
						|
        clk = 0; #16;
 | 
						|
      end
 | 
						|
 | 
						|
 | 
						|
  // Read test vectors from disk
 | 
						|
  initial
 | 
						|
    begin
 | 
						|
      testnum = 0; 
 | 
						|
      errors = 0;
 | 
						|
      $readmemh ("testvectors", Tests);
 | 
						|
      Vec = Tests[testnum];
 | 
						|
      a = Vec[`mema];
 | 
						|
      b = Vec[`memb];
 | 
						|
      nextr = Vec[`memr];
 | 
						|
      req <= #5 1;
 | 
						|
    end
 | 
						|
  
 | 
						|
  // Apply directed test vectors read from file.
 | 
						|
 | 
						|
  always @(posedge clk)
 | 
						|
    begin
 | 
						|
      if (done) 
 | 
						|
	begin
 | 
						|
	  req <= #5 1;
 | 
						|
	  $display("result was %h, should be %h\n", r, correctr);
 | 
						|
	  if ((correctr - r) > 1) // check if accurate to 1 ulp
 | 
						|
	    begin
 | 
						|
	      errors = errors+1;
 | 
						|
	      $display("failed\n");
 | 
						|
	      $stop;
 | 
						|
	    end
 | 
						|
	  if (a === 52'hxxxxxxxxxxxxx)
 | 
						|
	    begin
 | 
						|
	      $display("Tests completed successfully");
 | 
						|
	      $stop;
 | 
						|
	    end
 | 
						|
	end
 | 
						|
      if (req) 
 | 
						|
	begin
 | 
						|
	  req <= #5 0;
 | 
						|
	  correctr = nextr;
 | 
						|
	  testnum = testnum+1;
 | 
						|
	  Vec = Tests[testnum];
 | 
						|
	  $display("a = %h  b = %h",a,b);
 | 
						|
	  a = Vec[`mema];
 | 
						|
	  b = Vec[`memb];
 | 
						|
	  nextr = Vec[`memr];
 | 
						|
	end
 | 
						|
    end
 | 
						|
 
 | 
						|
endmodule
 | 
						|
 
 |