mirror of
				https://github.com/openhwgroup/cvw
				synced 2025-02-11 06:05:49 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			471 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			471 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/python3
 | |
| 
 | |
| ###########################################
 | |
| ## Written: Rose Thompson ross1728@gmail.com
 | |
| ## Created: 20 September 2023
 | |
| ## Modified: 
 | |
| ##
 | |
| ## Purpose: Parses the performance counters from a modelsim trace.
 | |
| ##
 | |
| ## A component of the CORE-V-WALLY configurable RISC-V project.
 | |
| ##
 | |
| ## Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
 | |
| ##
 | |
| ## SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
 | |
| ##
 | |
| ## Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file 
 | |
| ## except in compliance with the License, or, at your option, the Apache License version 2.0. You 
 | |
| ## may obtain a copy of the License at
 | |
| ##
 | |
| ## https:##solderpad.org/licenses/SHL-2.1/
 | |
| ##
 | |
| ## Unless required by applicable law or agreed to in writing, any work distributed under the 
 | |
| ## License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, 
 | |
| ## either express or implied. See the License for the specific language governing permissions 
 | |
| ## and limitations under the License.
 | |
| ################################################################################################
 | |
| 
 | |
| import os
 | |
| import sys
 | |
| import matplotlib.pyplot as plt
 | |
| import math
 | |
| import numpy as np
 | |
| import argparse
 | |
| 
 | |
| RefData = [('twobitCModel6', 'twobitCModel', 64, 9.65280765420711), ('twobitCModel8', 'twobitCModel', 256, 8.75120245829945), ('twobitCModel10', 'twobitCModel', 1024, 8.1318382397263),
 | |
|            ('twobitCModel12', 'twobitCModel', 4096, 7.53026646633342), ('twobitCModel14', 'twobitCModel', 16384, 6.07679338544009), ('twobitCModel16', 'twobitCModel', 65536, 6.07679338544009),
 | |
|            ('gshareCModel6', 'gshareCModel', 64, 10.6602835418646), ('gshareCModel8', 'gshareCModel', 256, 8.38384710559667), ('gshareCModel10', 'gshareCModel', 1024, 6.36847432155534),
 | |
|            ('gshareCModel12', 'gshareCModel', 4096, 3.91108491151983), ('gshareCModel14', 'gshareCModel', 16384, 2.83926519215395), ('gshareCModel16', 'gshareCModel', 65536, .60213659066941)]
 | |
| 
 | |
| def ParseBranchListFile(path):
 | |
|     '''Take the path to the list of Questa Sim log files containing the performance counters outputs.  File
 | |
|     is formated in row columns.  Each row is a trace with the file, branch predictor type, and the parameters.
 | |
|     parameters can be any number and depend on the predictor type. Returns a list of lists.'''
 | |
|     lst = []
 | |
|     BranchList = open(path, 'r')
 | |
|     for line in BranchList:
 | |
|         tokens = line.split()
 | |
|         predictorLog = os.path.dirname(path) + '/' + tokens[0]
 | |
|         predictorType = tokens[1]
 | |
|         predictorParams = tokens[2::]
 | |
|         lst.append([predictorLog, predictorType, predictorParams])
 | |
|         #print(predictorLog, predictorType, predictorParams)
 | |
|     return lst
 | |
|     
 | |
| def ProcessFile(fileName):
 | |
|     '''Extract preformance counters from a modelsim log.  Outputs a list of tuples for each test/benchmark.
 | |
|     The tuple contains the test name, optimization characteristics, and dictionary of performance counters.'''
 | |
|     # 1 find lines with Read memfile and extract test name
 | |
|     # 2 parse counters into a list of (name, value) tuples (dictionary maybe?)
 | |
|     benchmarks = []
 | |
|     transcript = open(fileName, 'r')
 | |
|     HPMClist = { }
 | |
|     testName = ''
 | |
|     for line in transcript.readlines():
 | |
|         lineToken = line.split()
 | |
|         if(len(lineToken) > 3 and lineToken[1] == 'Read' and lineToken[2] == 'memfile'):
 | |
|             opt = lineToken[3].split('/')[-4]
 | |
|             testName = lineToken[3].split('/')[-1].split('.')[0]
 | |
|             HPMClist = { }
 | |
|         elif(len(lineToken) > 4 and lineToken[1][0:3] == 'Cnt'):
 | |
|             countToken = line.split('=')[1].split()
 | |
|             value = int(countToken[0]) if countToken[0] != 'x' else 0
 | |
|             name = ' '.join(countToken[1:])
 | |
|             HPMClist[name] = value
 | |
|         elif ('is done' in line):
 | |
|             benchmarks.append((testName, opt, HPMClist))
 | |
|     return benchmarks
 | |
| 
 | |
| 
 | |
| def ComputeStats(benchmarks):
 | |
|     for benchmark in benchmarks:
 | |
|         (nameString, opt, dataDict) = benchmark
 | |
|         dataDict['CPI'] = 1.0 * int(dataDict['Mcycle']) / int(dataDict['InstRet'])
 | |
|         dataDict['BDMR'] = 100.0 * int(dataDict['BP Dir Wrong']) / int(dataDict['Br Count'])
 | |
|         dataDict['BTMR'] = 100.0 * int(dataDict['BP Target Wrong']) / (int(dataDict['Br Count']) + int(dataDict['Jump Not Return']))
 | |
|         dataDict['RASMPR'] = 100.0 * int(dataDict['RAS Wrong']) / int(dataDict['Return'])
 | |
|         dataDict['ClassMPR'] = 100.0 * int(dataDict['Instr Class Wrong']) / int(dataDict['InstRet'])
 | |
|         dataDict['ICacheMR'] = 100.0 * int(dataDict['I Cache Miss']) / int(dataDict['I Cache Access'])
 | |
| 
 | |
|         cycles = int(dataDict['I Cache Miss'])
 | |
|         if(cycles == 0): ICacheMR = 0
 | |
|         else: ICacheMR = 100.0 * int(dataDict['I Cache Cycles']) / cycles
 | |
|         dataDict['ICacheMT'] = ICacheMR
 | |
| 
 | |
|         dataDict['DCacheMR'] = 100.0 * int(dataDict['D Cache Miss']) / int(dataDict['D Cache Access'])
 | |
| 
 | |
|         (nameString, opt, dataDict) = benchmark
 | |
|         cycles = int(dataDict['D Cache Miss'])
 | |
|         if(cycles == 0): DCacheMR = 0
 | |
|         else: DCacheMR = 100.0 * int(dataDict['D Cache Cycles']) / cycles
 | |
|         dataDict['DCacheMT'] = DCacheMR
 | |
| 
 | |
| 
 | |
| def ComputeGeometricAverage(benchmarks):
 | |
|     fields = ['BDMR', 'BTMR', 'RASMPR', 'ClassMPR', 'ICacheMR', 'DCacheMR', 'CPI', 'ICacheMT', 'DCacheMT']
 | |
|     AllAve = {}
 | |
|     for field in fields:
 | |
|         Product = 1
 | |
|         index = 0
 | |
|         for (testName, opt, HPMCList) in benchmarks:
 | |
|             #print(HPMCList)
 | |
|             value = HPMCList[field]
 | |
|             if(value != 0): Product *= value # if that value is 0 exclude from mean because it destories the geo mean
 | |
|             index += 1
 | |
|         AllAve[field] = Product ** (1.0/index)
 | |
|     benchmarks.append(('Mean', '', AllAve))
 | |
| 
 | |
| def GenerateName(predictorType, predictorParams):
 | |
|     if(predictorType == 'gshare' or  predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class' or predictorType == 'ras'):
 | |
|         return predictorType + predictorParams[0]
 | |
|     elif(predictorParams == 'local'):
 | |
|         return predictorType + predictorParams[0] + '_' + predictorParams[1]
 | |
|     else:
 | |
|         print(f'Error unsupported predictor type {predictorType}')
 | |
|         sys.exit(-1)
 | |
| 
 | |
| def ComputePredNumEntries(predictorType, predictorParams):
 | |
|     if(predictorType == 'gshare' or  predictorType == 'twobit' or predictorType == 'btb' or predictorType == 'class'):
 | |
|         return 2**int(predictorParams[0])
 | |
|     elif(predictorType == 'ras'):
 | |
|         return int(predictorParams[0])
 | |
|     elif(predictorParams == 'local'):
 | |
|         return 2**int(predictorParams[0]) * int(predictorParams[1]) + 2**int(predictorParams[1])
 | |
|     else:
 | |
|         print(f'Error unsupported predictor type {predictorType}')
 | |
|         sys.exit(-1)
 | |
| 
 | |
| def BuildDataBase(predictorLogs):
 | |
|     # Once done with the following loop, performanceCounterList will contain the predictor type and size along with the
 | |
|     # raw performance counter data and the processed data on a per benchmark basis.  It also includes the geometric mean.
 | |
|     # list
 | |
|     #   branch predictor configuration 0 (tuple)
 | |
|     #     benchmark name
 | |
|     #     compiler optimization
 | |
|     #     data (dictionary)
 | |
|     #       dictionary of performance counters
 | |
|     #   branch predictor configuration 1 (tuple)
 | |
|     #     benchmark name (dictionary)
 | |
|     #     compiler optimization
 | |
|     #     data
 | |
|     #       dictionary of performance counters
 | |
|     # ...
 | |
|     performanceCounterList = []
 | |
|     for trace in predictorLogs:
 | |
|         predictorLog = trace[0]
 | |
|         predictorType = trace[1]
 | |
|         predictorParams = trace[2]
 | |
|         # Extract the performance counter data
 | |
|         performanceCounters = ProcessFile(predictorLog)
 | |
|         ComputeStats(performanceCounters)
 | |
|         ComputeGeometricAverage(performanceCounters)
 | |
|         #print(performanceCounters)
 | |
|         performanceCounterList.append([GenerateName(predictorType, predictorParams), predictorType, performanceCounters, ComputePredNumEntries(predictorType, predictorParams)])
 | |
|     return performanceCounterList
 | |
| 
 | |
| def ReorderDataBase(performanceCounterList):
 | |
|     # Reorder the data so the benchmark name comes first, then the branch predictor configuration
 | |
|     benchmarkFirstList = []
 | |
|     for (predictorName, predictorPrefixName, benchmarks, entries) in performanceCounterList:
 | |
|         for benchmark in benchmarks:
 | |
|             (nameString, opt, dataDict) = benchmark
 | |
|             benchmarkFirstList.append((nameString, opt, predictorName, predictorPrefixName, entries, dataDict))
 | |
|     return benchmarkFirstList
 | |
| 
 | |
| def ExtractSelectedData(benchmarkFirstList):
 | |
|     # now extract all branch prediction direction miss rates for each
 | |
|     # namestring + opt, config
 | |
|     benchmarkDict = { }
 | |
|     for benchmark in benchmarkFirstList:
 | |
|         (name, opt, config, prefixName, entries, dataDict) = benchmark
 | |
|         if opt == 'bd_speedopt_speed': NewName = name+'Sp'
 | |
|         elif opt == 'bd_sizeopt_speed': NewName = name+'Sz'
 | |
|         else: NewName = name
 | |
|         #print(NewName)
 | |
|         #NewName = name+'_'+opt
 | |
|         if NewName in benchmarkDict:
 | |
|             benchmarkDict[NewName].append((config, prefixName, entries, dataDict[ReportPredictorType]))
 | |
|         else:
 | |
|             benchmarkDict[NewName] = [(config, prefixName, entries, dataDict[ReportPredictorType])]
 | |
|     return benchmarkDict
 | |
| 
 | |
| def ReportAsTable(benchmarkDict):
 | |
|     refLine = benchmarkDict['Mean']
 | |
|     FirstLine = []
 | |
|     SecondLine = []
 | |
|     for (name, typ, size, val) in refLine:
 | |
|         FirstLine.append(name)
 | |
|         SecondLine.append(size)
 | |
| 
 | |
|     sys.stdout.write('benchmark\t\t')
 | |
|     for name in FirstLine:
 | |
|         if(len(name) < 8): sys.stdout.write('%s\t\t' % name)
 | |
|         else: sys.stdout.write('%s\t' % name)        
 | |
|     sys.stdout.write('\n')
 | |
|     sys.stdout.write('size\t\t\t')
 | |
|     for size in SecondLine:
 | |
|         if(len(str(size)) < 8): sys.stdout.write('%d\t\t' % size)
 | |
|         else: sys.stdout.write('%d\t' % size)        
 | |
|     sys.stdout.write('\n')
 | |
| 
 | |
|     if(args.summary):
 | |
|         sys.stdout.write('Mean\t\t\t')
 | |
|         for (name, typ, size, val) in refLine:
 | |
|             sys.stdout.write('%0.2f\t\t' % (val if not args.invert else 100 - val))
 | |
|         sys.stdout.write('\n')
 | |
| 
 | |
|     if(not args.summary):
 | |
|         for benchmark in benchmarkDict:
 | |
|             length = len(benchmark)
 | |
|             if(length < 8): sys.stdout.write('%s\t\t\t' % benchmark)
 | |
|             elif(length < 16): sys.stdout.write('%s\t\t' % benchmark)
 | |
|             else: sys.stdout.write('%s\t' % benchmark)
 | |
|             for (name, typ, size, val) in benchmarkDict[benchmark]:
 | |
|                 sys.stdout.write('%0.2f\t\t' % (val if not args.invert else 100 -val))
 | |
|             sys.stdout.write('\n')
 | |
| 
 | |
| def ReportAsText(benchmarkDict):
 | |
|     if(args.summary):
 | |
|         mean = benchmarkDict['Mean']
 | |
|         print('Mean')
 | |
|         for (name, typ, size, val) in mean:
 | |
|             sys.stdout.write('%s %s %0.2f\n' % (name, size, val if not args.invert else 100 - val))
 | |
|         
 | |
|     if(not args.summary):
 | |
|         for benchmark in benchmarkDict:
 | |
|             print(benchmark)
 | |
|             for (name, type, size, val) in benchmarkDict[benchmark]:
 | |
|                 sys.stdout.write('%s %s %0.2f\n' % (name, size, val if not args.invert else 100 - val))
 | |
| 
 | |
| def Inversion(lst):
 | |
|     return [x if not args.invert else 100 - x for x in lst]
 | |
| 
 | |
| def BarGraph(seriesDict, xlabelList, BenchPerRow, FileName):
 | |
|     index = 0
 | |
|     NumberInGroup = len(seriesDict)
 | |
|     # Figure out width of bars.  NumberInGroup bars + want 2 bar space
 | |
|     # the space between groups is 1
 | |
|     EffectiveNumInGroup = NumberInGroup + 2
 | |
|     barWidth = 1 / EffectiveNumInGroup
 | |
|     fig = plt.subplots(figsize = (EffectiveNumInGroup*BenchPerRow/8, 4))
 | |
|     colors = ['blue', 'blue', 'blue', 'blue', 'blue', 'blue', 'black', 'black', 'black', 'black', 'black', 'black']
 | |
|     for name in seriesDict:
 | |
|         xpos = np.arange(BenchPerRow)
 | |
|         xpos = [x + index*barWidth for x in xpos]
 | |
|         values = seriesDict[name]
 | |
|         plt.bar(xpos, Inversion(values), width=barWidth, edgecolor='grey', label=name, color=colors[index%len(colors)])
 | |
|         index += 1
 | |
|     plt.xticks([r + barWidth*(NumberInGroup/2-0.5) for r in range(0, BenchPerRow)], xlabelList)
 | |
|     plt.xlabel('Benchmark')
 | |
|     if(not args.invert): plt.ylabel('Misprediction Rate (%)')
 | |
|     else:  plt.ylabel('Prediction Accuracy (%)') 
 | |
|     plt.legend(loc='upper left', ncol=2)
 | |
|     plt.savefig(FileName)
 | |
| 
 | |
| def SelectPartition(xlabelListBig, seriesDictBig, group, BenchPerRow):
 | |
|     seriesDictTrunk = {}
 | |
|     for benchmarkName in seriesDictBig:
 | |
|         lst = seriesDictBig[benchmarkName]
 | |
|         seriesDictTrunk[benchmarkName] = lst[group*BenchPerRow:(group+1)*BenchPerRow]
 | |
|     xlabelListTrunk = xlabelListBig[group*BenchPerRow:(group+1)*BenchPerRow]
 | |
|     return(xlabelListTrunk, seriesDictTrunk)
 | |
| 
 | |
| 
 | |
| def ReportAsGraph(benchmarkDict, bar):
 | |
|     def FormatToPlot(currBenchmark):
 | |
|         names = []
 | |
|         sizes = []
 | |
|         values = []
 | |
|         typs = []
 | |
|         for config in currBenchmark:
 | |
|             names.append(config[0])
 | |
|             sizes.append(config[1])
 | |
|             values.append(config[2])
 | |
|             typs.append(config[3])
 | |
|         return (names, sizes, values, typs)
 | |
|     titlesInvert = {'BDMR' : 'Branch Direction Accuracy',
 | |
|               'BTMR' : 'Branch Target Accuracy',
 | |
|               'RASMPR': 'RAS Accuracy',
 | |
|               'ClassMPR': 'Class Prediction Accuracy'}
 | |
|     titles = {'BDMR' : 'Branch Direction Misprediction',
 | |
|               'BTMR' : 'Branch Target Misprediction',
 | |
|               'RASMPR': 'RAS Misprediction',
 | |
|               'ClassMPR': 'Class Misprediction'}
 | |
|     if(args.summary):
 | |
|         markers = ['x', '.', '+', '*', '^', 'o', ',', 's']
 | |
|         colors = ['blue', 'black', 'gray', 'dodgerblue', 'lightsteelblue', 'turquoise', 'black', 'blue']
 | |
|         temp = benchmarkDict['Mean']
 | |
| 
 | |
|         # the benchmarkDict['Mean'] contains sequencies of results for multiple
 | |
|         # branch predictors with various parameterizations
 | |
|         # group the parameterizations by the common typ.
 | |
|         sequencies = {}
 | |
|         for (name, typ, size, value) in benchmarkDict['Mean']:
 | |
|             if not typ in sequencies:
 | |
|                 sequencies[typ] = [(size, value)]
 | |
|             else:
 | |
|                 sequencies[typ].append((size,value))
 | |
|         # then graph the common typ as a single line+scatter plot
 | |
|         # finally repeat for all typs of branch predictors and overlay
 | |
|         fig, axes = plt.subplots()
 | |
|         index = 0
 | |
|         if(args.invert): plt.title(titlesInvert[ReportPredictorType])
 | |
|         else: plt.title(titles[ReportPredictorType])
 | |
|         for branchPredName in sequencies:
 | |
|             data = sequencies[branchPredName]
 | |
|             (xdata, ydata) = zip(*data) 
 | |
|             if args.invert: ydata = [100 - x for x in ydata]
 | |
|             axes.plot(xdata, ydata, color=colors[index])
 | |
|             axes.scatter(xdata, ydata, label=branchPredName, color=colors[index], marker=markers[index])
 | |
|             index = (index + 1) % len(markers)
 | |
|         axes.legend(loc='upper left')
 | |
|         axes.set_xscale("log")
 | |
|         axes.set_ylabel('Prediction Accuracy')
 | |
|         axes.set_xlabel('Entries')
 | |
|         axes.set_xticks(xdata)
 | |
|         axes.set_xticklabels(xdata)
 | |
|         axes.grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
 | |
|         plt.show()
 | |
|         
 | |
| 
 | |
|     # if(not args.summary):
 | |
|     #     size = len(benchmarkDict)
 | |
|     #     sizeSqrt = math.sqrt(size)
 | |
|     #     isSquare = math.isclose(sizeSqrt, round(sizeSqrt))
 | |
|     #     numCol = math.floor(sizeSqrt)
 | |
|     #     numRow = numCol + (0 if isSquare else 1)
 | |
|     #     index = 1
 | |
|     #     fig = plt.figure()
 | |
|     #     for benchmarkName in benchmarkDict:
 | |
|     #         currBenchmark = benchmarkDict[benchmarkName]
 | |
|     #         (names, typs, sizes, values) = FormatToPlot(currBenchmark)
 | |
|     #         #axes.plot(numRow, numCol, index)
 | |
|     #         ax = fig.add_subplot(numRow, numCol, index)
 | |
|     #         ax.bar(names, values)
 | |
|     #         ax.title.set_text(benchmarkName)
 | |
|     #         #plt.ylabel('BR Dir Miss Rate (%)')
 | |
|     #         #plt.xlabel('Predictor')
 | |
|     #         index += 1
 | |
| 
 | |
|     if(not args.summary):
 | |
|         size = len(benchmarkDict)
 | |
|         sizeSqrt = math.sqrt(size)
 | |
|         isSquare = math.isclose(sizeSqrt, round(sizeSqrt))
 | |
|         numCol = math.floor(sizeSqrt)
 | |
|         numRow = numCol + (0 if isSquare else 1)
 | |
|         index = 1
 | |
|         BenchPerRow = 7
 | |
| 
 | |
|         xlabelList = []
 | |
|         seriesDict = {}
 | |
| 
 | |
|         for benchmarkName in benchmarkDict:
 | |
|             currBenchmark = benchmarkDict[benchmarkName]
 | |
|             xlabelList.append(benchmarkName)
 | |
|             for (name, typ, size, value) in currBenchmark:
 | |
|                 if(name not in seriesDict):
 | |
|                     seriesDict[name] = [value]
 | |
|                 else:
 | |
|                     seriesDict[name].append(value)
 | |
|             if(index >= BenchPerRow): break
 | |
|             index += 1
 | |
| 
 | |
|         xlabelListBig = []
 | |
|         seriesDictBig = {}
 | |
|         for benchmarkName in benchmarkDict:
 | |
|             currBenchmark = benchmarkDict[benchmarkName]
 | |
|             xlabelListBig.append(benchmarkName)
 | |
|             for (name, typ, size, value) in currBenchmark:
 | |
|                 if(name not in seriesDictBig):
 | |
|                     seriesDictBig[name] = [value]
 | |
|                 else:
 | |
|                     seriesDictBig[name].append(value)
 | |
| 
 | |
|         #The next step will be to split the benchmarkDict into length BenchPerRow pieces then repeat the following code
 | |
|         # on each piece.
 | |
|         for row in range(0, math.ceil(39 / BenchPerRow)):
 | |
|             (xlabelListTrunk, seriesDictTrunk) = SelectPartition(xlabelListBig, seriesDictBig, row, BenchPerRow)
 | |
|             FileName = 'barSegment%d.png' % row
 | |
|             groupLen = len(xlabelListTrunk)
 | |
|             BarGraph(seriesDictTrunk, xlabelListTrunk, groupLen, FileName)
 | |
| 
 | |
| 
 | |
| # main
 | |
| parser = argparse.ArgumentParser(description='Parses performance counters from a Questa Sim trace to produce a graph or graphs.')
 | |
| 
 | |
| # parse program arguments
 | |
| metric = parser.add_mutually_exclusive_group()
 | |
| metric.add_argument('-r', '--ras', action='store_const', help='Plot return address stack (RAS) performance.', default=False, const=True)
 | |
| metric.add_argument('-d', '--direction', action='store_const', help='Plot direction prediction (2-bit, Gshare, local, etc) performance.', default=False, const=True)
 | |
| metric.add_argument('-t', '--target', action='store_const', help='Plot branch target buffer (BTB) performance.', default=False, const=True)
 | |
| metric.add_argument('-c', '--iclass', action='store_const', help='Plot instruction classification performance.', default=False, const=True)
 | |
| 
 | |
| parser.add_argument('-s', '--summary', action='store_const', help='Show only the geometric average for all benchmarks.', default=False, const=True)
 | |
| parser.add_argument('-b', '--bar', action='store_const', help='Plot graphs.', default=False, const=True)
 | |
| parser.add_argument('-g', '--reference', action='store_const', help='Include the golden reference model from branch-predictor-simulator. Data stored statically at the top of %(prog)s.  If you need to regenreate use CModelBranchAcurracy.sh', default=False, const=True)
 | |
| parser.add_argument('-i', '--invert', action='store_const', help='Invert metric. Example Branch miss prediction becomes prediction accuracy. 100 - miss rate', default=False, const=True)
 | |
| 
 | |
| displayMode = parser.add_mutually_exclusive_group()
 | |
| displayMode.add_argument('--text', action='store_const', help='Display in text format only.', default=False, const=True)
 | |
| displayMode.add_argument('--table', action='store_const', help='Display in text format only.', default=False, const=True)
 | |
| displayMode.add_argument('--gui', action='store_const', help='Display in text format only.', default=False, const=True)
 | |
| displayMode.add_argument('--debug', action='store_const', help='Display in text format only.', default=False, const=True)
 | |
| parser.add_argument('sources', nargs=1)
 | |
| 
 | |
| args = parser.parse_args()
 | |
| 
 | |
| # Figure what we are reporting
 | |
| ReportPredictorType = 'BDMR'  # default
 | |
| if(args.ras): ReportPredictorType = 'RASMPR'
 | |
| if(args.target): ReportPredictorType = 'BTMR'
 | |
| if(args.iclass): ReportPredictorType = 'ClassMPR'
 | |
| 
 | |
| # Figure how we are displaying the data
 | |
| ReportMode = 'gui' # default
 | |
| if(args.text): ReportMode = 'text'
 | |
| if(args.table): ReportMode = 'table'
 | |
| if(args.debug): ReportMode = 'debug'
 | |
| 
 | |
| # read the questa sim list file.
 | |
| # row, col format.  each row is a questa sim run with performance counters and a particular
 | |
| # branch predictor type and size. size can be multiple parameters for more complex predictors like
 | |
| # local history and tage.
 | |
| # <file> <type> <size>
 | |
| predictorLogs = ParseBranchListFile(args.sources[0])          # digests the traces
 | |
| performanceCounterList = BuildDataBase(predictorLogs)         # builds a database of performance counters by trace and then by benchmark
 | |
| benchmarkFirstList = ReorderDataBase(performanceCounterList)  # reorder first by benchmark then trace
 | |
| benchmarkDict = ExtractSelectedData(benchmarkFirstList)       # filters to just the desired performance counter metric
 | |
| 
 | |
| if(args.reference): benchmarkDict['Mean'].extend(RefData)
 | |
| #print(benchmarkDict['Mean'])
 | |
| #print(benchmarkDict['aha-mont64Speed'])
 | |
| #print(benchmarkDict)
 | |
| 
 | |
| # table format
 | |
| if(ReportMode == 'table'):
 | |
|     ReportAsTable(benchmarkDict)
 | |
| 
 | |
| if(ReportMode == 'text'):
 | |
|     ReportAsText(benchmarkDict)
 | |
| 
 | |
| if(ReportMode == 'gui'):
 | |
|     ReportAsGraph(benchmarkDict, args.bar)
 | |
|             
 | |
| # *** this is only needed of -b (no -s)
 | |
| 
 | |
| # debug
 | |
| #config0 = performanceCounterList[0][0]
 | |
| #data0 = performanceCounterList[0][1]
 | |
| #bench0 = data0[0]
 | |
| #bench0name = bench0[0]
 | |
| #bench0data = bench0[2]
 | |
| #bench0BrCount = bench0data['Br Count']
 | |
| #bench1 = data0[1]
 | |
| 
 | |
| #print(data0)
 | |
| #print(bench0)
 | |
| #print(bench1)
 | |
| 
 | |
| #print(bench0name)
 | |
| #print(bench0BrCount)
 |