mirror of
https://github.com/openhwgroup/cvw
synced 2025-02-11 06:05:49 +00:00
849 lines
43 KiB
Systemverilog
849 lines
43 KiB
Systemverilog
///////////////////////////////////////////
|
|
//
|
|
// Written: Katherine Parry, David Harris
|
|
// Modified: 6/23/2021
|
|
//
|
|
// Purpose: Floating point multiply-accumulate of configurable size
|
|
//
|
|
// A component of the Wally configurable RISC-V project.
|
|
//
|
|
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
|
|
//
|
|
// MIT LICENSE
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
|
|
// software and associated documentation files (the "Software"), to deal in the Software
|
|
// without restriction, including without limitation the rights to use, copy, modify, merge,
|
|
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
|
|
// to whom the Software is furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all copies or
|
|
// substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
|
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
|
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
|
|
// OR OTHER DEALINGS IN THE SOFTWARE.
|
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
`include "wally-config.vh"
|
|
|
|
// `define FLEN 64//(`Q_SUPPORTED ? 128 : `D_SUPPORTED ? 64 : 32)
|
|
// `define NE 11//(`Q_SUPPORTED ? 15 : `D_SUPPORTED ? 11 : 8)
|
|
// `define NF 52//(`Q_SUPPORTED ? 112 : `D_SUPPORTED ? 52 : 23)
|
|
// `define XLEN 64
|
|
// `define IEEE754 1
|
|
module fma(
|
|
input logic clk,
|
|
input logic reset,
|
|
input logic FlushM, // flush the memory stage
|
|
input logic StallM, // stall memory stage
|
|
input logic FmtE, FmtM, // precision 1 = double 0 = single
|
|
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
|
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
|
input logic XSgnE, YSgnE, ZSgnE, // input signs - execute stage
|
|
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // input exponents - execute stage
|
|
input logic [`NF:0] XManE, YManE, ZManE, // input mantissa - execute stage
|
|
input logic XSgnM, YSgnM, // input signs - memory stage
|
|
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents - memory stage
|
|
input logic [`NF:0] XManM, YManM, ZManM, // input mantissa - memory stage
|
|
input logic XDenormE, YDenormE, ZDenormE, // is denorm
|
|
input logic XZeroE, YZeroE, ZZeroE, // is zero - execute stage
|
|
input logic XNaNM, YNaNM, ZNaNM, // is NaN
|
|
input logic XSNaNM, YSNaNM, ZSNaNM, // is signaling NaN
|
|
input logic XZeroM, YZeroM, ZZeroM, // is zero - memory stage
|
|
input logic XInfM, YInfM, ZInfM, // is infinity
|
|
output logic [`FLEN-1:0] FMAResM, // FMA result
|
|
output logic [4:0] FMAFlgM); // FMA flags
|
|
|
|
//fma/mult/add
|
|
// fmadd = 000
|
|
// fmsub = 001
|
|
// fnmsub = 010 -(a*b)+c
|
|
// fnmadd = 011 -(a*b)-c
|
|
// fmul = 100
|
|
// fadd = 110
|
|
// fsub = 111
|
|
|
|
// signals transfered between pipeline stages
|
|
logic [3*`NF+5:0] SumE, SumM;
|
|
logic [`NE+1:0] ProdExpE, ProdExpM;
|
|
logic AddendStickyE, AddendStickyM;
|
|
logic KillProdE, KillProdM;
|
|
logic InvZE, InvZM;
|
|
logic NegSumE, NegSumM;
|
|
logic ZSgnEffE, ZSgnEffM;
|
|
logic PSgnE, PSgnM;
|
|
logic [8:0] NormCntE, NormCntM;
|
|
logic Mult;
|
|
|
|
fma1 fma1 (.XSgnE, .YSgnE, .ZSgnE, .XExpE, .YExpE, .ZExpE, .XManE, .YManE, .ZManE,
|
|
.XDenormE, .YDenormE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE,
|
|
.FOpCtrlE, .FmtE, .SumE, .NegSumE, .InvZE, .NormCntE, .ZSgnEffE, .PSgnE,
|
|
.ProdExpE, .AddendStickyE, .KillProdE);
|
|
|
|
// E/M pipeline registers
|
|
flopenrc #(3*`NF+6) EMRegFma2(clk, reset, FlushM, ~StallM, SumE, SumM);
|
|
flopenrc #(13) EMRegFma3(clk, reset, FlushM, ~StallM, ProdExpE, ProdExpM);
|
|
flopenrc #(16) EMRegFma4(clk, reset, FlushM, ~StallM,
|
|
{AddendStickyE, KillProdE, InvZE, NormCntE, NegSumE, ZSgnEffE, PSgnE, FOpCtrlE[2]&~FOpCtrlE[1]&~FOpCtrlE[0]},
|
|
{AddendStickyM, KillProdM, InvZM, NormCntM, NegSumM, ZSgnEffM, PSgnM, Mult});
|
|
|
|
fma2 fma2(.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
|
|
.FrmM, .FmtM, .ProdExpM, .AddendStickyM, .KillProdM, .SumM, .NegSumM, .InvZM, .NormCntM, .ZSgnEffM, .PSgnM,
|
|
.XZeroM, .YZeroM, .ZZeroM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .XSNaNM, .YSNaNM, .ZSNaNM, .Mult,
|
|
.FMAResM, .FMAFlgM);
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
module fma1(
|
|
input logic XSgnE, YSgnE, ZSgnE, // input's signs
|
|
input logic [`NE-1:0] XExpE, YExpE, ZExpE, // biased exponents in B(NE.0) format
|
|
input logic [`NF:0] XManE, YManE, ZManE, // fractions in U(0.NF) format
|
|
input logic XDenormE, YDenormE, ZDenormE, // is the input denormal
|
|
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
|
|
input logic [2:0] FOpCtrlE, // 000 = fmadd (X*Y)+Z, 001 = fmsub (X*Y)-Z, 010 = fnmsub -(X*Y)+Z, 011 = fnmadd -(X*Y)-Z, 100 = fmul (X*Y)
|
|
input logic FmtE, // precision 1 = double 0 = single
|
|
output logic [`NE+1:0] ProdExpE, // X exponent + Y exponent - bias in B(NE+2.0) format; adds 2 bits to allow for size of number and negative sign
|
|
output logic AddendStickyE, // sticky bit that is calculated during alignment
|
|
output logic KillProdE, // set the product to zero before addition if the product is too small to matter
|
|
output logic [3*`NF+5:0] SumE, // the positive sum
|
|
output logic NegSumE, // was the sum negitive
|
|
output logic InvZE, // intert Z
|
|
output logic ZSgnEffE, // the modified Z sign
|
|
output logic PSgnE, // the product's sign
|
|
output logic [8:0] NormCntE // normalization shift cnt
|
|
);
|
|
|
|
logic [`NE-1:0] Denorm; // value of a denormaized number based on precision
|
|
logic [2*`NF+1:0] ProdManE; // 1.X frac * 1.Y frac in U(2.2Nf) format
|
|
logic [3*`NF+5:0] AlignedAddendE; // Z aligned for addition in U(NF+5.2NF+1)
|
|
logic [3*`NF+6:0] AlignedAddendInv; // aligned addend possibly inverted
|
|
logic [2*`NF+1:0] ProdManKilled; // the product's mantissa possibly killed
|
|
logic [3*`NF+6:0] PreSum, NegPreSum; // positive and negitve versions of the sum
|
|
logic [`NE-1:0] XExpVal, YExpVal; // exponent value after taking into accound denormals
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Calculate the product
|
|
// - When multipliying two fp numbers, add the exponents
|
|
// - Subtract the bias (XExp + YExp has two biases, one from each exponent)
|
|
// - If the product is zero then kill the exponent
|
|
// - Multiply the mantissas
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// calculate the product's exponent
|
|
expadd expadd(.FmtE, .XExpE, .YExpE, .XZeroE, .YZeroE, .XDenormE, .YDenormE, .XExpVal, .YExpVal,
|
|
.Denorm, .ProdExpE);
|
|
|
|
// multiplication of the mantissa's
|
|
mult mult(.XManE, .YManE, .ProdManE);
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Alignment shifter
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
align align(.ZExpE, .ZManE, .ZDenormE, .XZeroE, .YZeroE, .ZZeroE, .ProdExpE, .Denorm, .XExpVal, .YExpVal,
|
|
.AlignedAddendE, .AddendStickyE, .KillProdE);
|
|
|
|
// calculate the signs and take the opperation into account
|
|
sign sign(.FOpCtrlE, .XSgnE, .YSgnE, .ZSgnE, .PSgnE, .ZSgnEffE);
|
|
|
|
// ///////////////////////////////////////////////////////////////////////////////
|
|
// // Addition/LZA
|
|
// ///////////////////////////////////////////////////////////////////////////////
|
|
|
|
add add(.AlignedAddendE, .ProdManE, .PSgnE, .ZSgnEffE, .KillProdE, .AlignedAddendInv, .ProdManKilled, .NegSumE, .PreSum, .NegPreSum, .InvZE, .XZeroE, .YZeroE);
|
|
|
|
loa loa(.A(AlignedAddendInv+{162'b0,InvZE}), .P(ProdManKilled), .NormCntE);
|
|
|
|
// Choose the positive sum and accompanying LZA result.
|
|
assign SumE = NegSumE ? NegPreSum[3*`NF+5:0] : PreSum[3*`NF+5:0];
|
|
// assign NormCntE = NegSumE ? NNormCnt : PNormCnt;
|
|
|
|
|
|
endmodule
|
|
|
|
|
|
module expadd(
|
|
input logic FmtE, // precision
|
|
input logic [`NE-1:0] XExpE, YExpE, // input exponents
|
|
input logic XDenormE, YDenormE, // are the inputs denormalized
|
|
input logic XZeroE, YZeroE, // are the inputs zero
|
|
output logic [`NE-1:0] XExpVal, YExpVal, // Exponent value after taking into account denormals
|
|
output logic [`NE-1:0] Denorm, // value of denormalized exponent
|
|
output logic [`NE+1:0] ProdExpE // product's exponent B^(1023)NE+2
|
|
);
|
|
|
|
|
|
// denormalized numbers have diffrent values depending on which precison it is.
|
|
// double - 1
|
|
// single - 1023-127+1 = 897
|
|
assign Denorm = FmtE ? 1 : 897;
|
|
|
|
// pick denormalized value or exponent
|
|
assign XExpVal = XDenormE ? Denorm : XExpE;
|
|
assign YExpVal = YDenormE ? Denorm : YExpE;
|
|
// kill the exponent if the product is zero - either X or Y is 0
|
|
assign ProdExpE = ({2'b0, XExpVal} + {2'b0, YExpVal} - {2'b0, `NE'h3ff})&{`NE+2{~(XZeroE|YZeroE)}};
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
|
|
module mult(
|
|
input logic [`NF:0] XManE, YManE,
|
|
output logic [2*`NF+1:0] ProdManE
|
|
);
|
|
assign ProdManE = XManE * YManE;
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module sign(
|
|
input logic [2:0] FOpCtrlE, // precision
|
|
input logic XSgnE, YSgnE, ZSgnE, // are the inputs denormalized
|
|
output logic PSgnE, // the product's sign - takes opperation into account
|
|
output logic ZSgnEffE // Z sign used in fma - takes opperation into account
|
|
);
|
|
|
|
// Calculate the product's sign
|
|
// Negate product's sign if FNMADD or FNMSUB
|
|
|
|
// flip is negation opperation
|
|
assign PSgnE = XSgnE ^ YSgnE ^ (FOpCtrlE[1]&~FOpCtrlE[2]);
|
|
// flip if subtraction
|
|
assign ZSgnEffE = ZSgnE^FOpCtrlE[0];
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module align(
|
|
input logic [`NE-1:0] ZExpE, // biased exponents in B(NE.0) format
|
|
input logic [`NF:0] ZManE, // fractions in U(0.NF) format]
|
|
input logic ZDenormE, // is the input denormal
|
|
input logic XZeroE, YZeroE, ZZeroE, // is the input zero
|
|
input logic [`NE-1:0] XExpVal, YExpVal, // Exponent value after taking into account denormals
|
|
input logic [`NE+1:0] ProdExpE, // the product's exponent
|
|
input logic [`NE-1:0] Denorm, // the biased value of a denormalized number
|
|
output logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
|
output logic AddendStickyE, // Sticky bit calculated from the aliged addend
|
|
output logic KillProdE // should the product be set to zero
|
|
);
|
|
|
|
logic [`NE+1:0] AlignCnt; // how far to shift the addend to align with the product in Q(NE+2.0) format
|
|
logic [4*`NF+5:0] ZManShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
|
|
logic [4*`NF+5:0] ZManPreShifted; // input to the alignment shifter U(NF+5.3NF+1)
|
|
logic [`NE-1:0] ZExpVal; // Exponent value after taking into account denormals
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Alignment shifter
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// determine the shift count for alignment
|
|
// - negitive means Z is larger, so shift Z left
|
|
// - positive means the product is larger, so shift Z right
|
|
// - Denormal numbers have a diffrent exponent value depending on the precision
|
|
assign ZExpVal = ZDenormE ? Denorm : ZExpE;
|
|
// assign AlignCnt = ProdExpE - {2'b0, ZExpVal} + (`NF+3);
|
|
assign AlignCnt = XZeroE|YZeroE ? -1 : {2'b0, XExpVal} + {2'b0, YExpVal} - 1020+`NF - {2'b0, ZExpVal};
|
|
|
|
// Defualt Addition without shifting
|
|
// | 54'b0 | 106'b(product) | 2'b0 |
|
|
// | addnend |
|
|
|
|
// the 1'b0 before the added is because the product's mantissa has two bits before the binary point (xx.xxxxxxxxxx...)
|
|
assign ZManPreShifted = {ZManE,(3*`NF+5)'(0)};
|
|
always_comb
|
|
begin
|
|
|
|
// If the product is too small to effect the sum, kill the product
|
|
|
|
// | 54'b0 | 106'b(product) | 2'b0 |
|
|
// | addnend |
|
|
if ($signed(AlignCnt) < $signed(13'b0)) begin
|
|
KillProdE = 1;
|
|
ZManShifted = ZManPreShifted;
|
|
AddendStickyE = ~(XZeroE|YZeroE);
|
|
|
|
// If the Addend is shifted right
|
|
// | 54'b0 | 106'b(product) | 2'b0 |
|
|
// | addnend |
|
|
end else if ($signed(AlignCnt)<=$signed(13'd3*13'd`NF+13'd4)) begin
|
|
KillProdE = 0;
|
|
ZManShifted = ZManPreShifted >> AlignCnt;
|
|
AddendStickyE = |(ZManShifted[`NF-1:0]);
|
|
|
|
// If the addend is too small to effect the addition
|
|
// - The addend has to shift two past the end of the addend to be considered too small
|
|
// - The 2 extra bits are needed for rounding
|
|
|
|
// | 54'b0 | 106'b(product) | 2'b0 |
|
|
// | addnend |
|
|
end else begin
|
|
KillProdE = 0;
|
|
ZManShifted = 0;
|
|
AddendStickyE = ~ZZeroE;
|
|
|
|
end
|
|
end
|
|
|
|
assign AlignedAddendE = ZManShifted[4*`NF+5:`NF];
|
|
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module add(
|
|
input logic [3*`NF+5:0] AlignedAddendE, // Z aligned for addition in U(NF+5.2NF+1)
|
|
input logic [2*`NF+1:0] ProdManE, // the product's mantissa
|
|
input logic PSgnE, ZSgnEffE,// the product and modified Z signs
|
|
input logic KillProdE, // should the product be set to 0
|
|
input logic XZeroE, YZeroE, // is the input zero
|
|
output logic [3*`NF+6:0] AlignedAddendInv, // aligned addend possibly inverted
|
|
output logic [2*`NF+1:0] ProdManKilled, // the product's mantissa possibly killed
|
|
output logic NegSumE, // was the sum negitive
|
|
output logic InvZE, // do you invert Z
|
|
output logic [3*`NF+6:0] PreSum, NegPreSum// possibly negitive sum
|
|
);
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Addition
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Negate Z when doing one of the following opperations:
|
|
// -prod + Z
|
|
// prod - Z
|
|
assign InvZE = ZSgnEffE ^ PSgnE;
|
|
|
|
// Choose an inverted or non-inverted addend - the one has to be added now for the LZA
|
|
assign AlignedAddendInv = InvZE ? {1'b1, ~AlignedAddendE} : {1'b0, AlignedAddendE};
|
|
// Kill the product if the product is too small to effect the addition (determined in fma1.sv)
|
|
assign ProdManKilled = ProdManE&{2*`NF+2{~KillProdE}};
|
|
|
|
|
|
|
|
// Do the addition
|
|
// - calculate a positive and negitive sum in parallel
|
|
assign PreSum = AlignedAddendInv + {55'b0, ProdManKilled, 2'b0} + {{3*`NF+6{1'b0}}, InvZE};
|
|
assign NegPreSum = XZeroE|YZeroE|KillProdE ? {1'b0, AlignedAddendE} : {1'b0, AlignedAddendE} + {{`NF+3{1'b1}}, ~ProdManKilled, 2'b0} + {(3*`NF+7)'(4)};
|
|
|
|
// Is the sum negitive
|
|
assign NegSumE = PreSum[3*`NF+6];
|
|
|
|
endmodule
|
|
|
|
|
|
module loa( //https://ieeexplore.ieee.org/abstract/document/930098
|
|
input logic [3*`NF+6:0] A, // addend
|
|
input logic [2*`NF+1:0] P, // product
|
|
output logic [8:0] NormCntE // normalization shift count for the positive result
|
|
);
|
|
|
|
logic [3*`NF+6:0] T;
|
|
logic [3*`NF+6:0] G;
|
|
logic [3*`NF+6:0] Z;
|
|
logic [3*`NF+6:0] f;
|
|
|
|
assign T[3*`NF+6:2*`NF+4] = A[3*`NF+6:2*`NF+4];
|
|
assign G[3*`NF+6:2*`NF+4] = 0;
|
|
assign Z[3*`NF+6:2*`NF+4] = ~A[3*`NF+6:2*`NF+4];
|
|
assign T[2*`NF+3:2] = A[2*`NF+3:2]^P;
|
|
assign G[2*`NF+3:2] = A[2*`NF+3:2]&P;
|
|
assign Z[2*`NF+3:2] = ~A[2*`NF+3:2]&~P;
|
|
assign T[1:0] = A[1:0];
|
|
assign G[1:0] = 0;
|
|
assign Z[1:0] = ~A[1:0];
|
|
|
|
|
|
// Apply function to determine Leading pattern
|
|
// - note: the paper linked above uses the numbering system where 0 is the most significant bit
|
|
//f[n] = ~T[n]&T[n-1] note: n is the MSB
|
|
//f[i] = (T[i+1]&(G[i]&~Z[i-1] | Z[i]&~G[i-1])) | (~T[i+1]&(Z[i]&~Z[i-1] | G[i]&~G[i-1]))
|
|
assign f[3*`NF+6] = ~T[3*`NF+6]&T[3*`NF+5];
|
|
assign f[3*`NF+5:0] = (T[3*`NF+6:1]&(G[3*`NF+5:0]&{~Z[3*`NF+4:0], 1'b0} | Z[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1})) | (~T[3*`NF+6:1]&(Z[3*`NF+5:0]&{~Z[3*`NF+4:0], 1'b0} | G[3*`NF+5:0]&{~G[3*`NF+4:0], 1'b1}));
|
|
|
|
|
|
|
|
lzc lzc(.f, .NormCntE);
|
|
|
|
endmodule
|
|
|
|
module lzc(
|
|
input logic [3*`NF+6:0] f,
|
|
output logic [8:0] NormCntE // normalization shift
|
|
);
|
|
|
|
logic [8:0] i;
|
|
always_comb begin
|
|
i = 0;
|
|
while (~f[3*`NF+6-i] && $unsigned(i) <= $unsigned(9'd3*9'd`NF+9'd6)) i = i+1; // search for leading one
|
|
NormCntE = i;
|
|
end
|
|
endmodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module fma2(
|
|
|
|
input logic XSgnM, YSgnM, // input signs
|
|
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents
|
|
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
|
|
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
|
input logic FmtM, // precision 1 = double 0 = single
|
|
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
|
input logic AddendStickyM, // sticky bit that is calculated during alignment
|
|
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
|
|
input logic XZeroM, YZeroM, ZZeroM, // inputs are zero
|
|
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
|
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
|
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
|
|
input logic [3*`NF+5:0] SumM, // the positive sum
|
|
input logic NegSumM, // was the sum negitive
|
|
input logic InvZM, // do you invert Z
|
|
input logic ZSgnEffM, // the modified Z sign - depends on instruction
|
|
input logic PSgnM, // the product's sign
|
|
input logic Mult, // multiply opperation
|
|
input logic [8:0] NormCntM, // the normalization shift count
|
|
output logic [`FLEN-1:0] FMAResM, // FMA final result
|
|
output logic [4:0] FMAFlgM); // FMA flags {invalid, divide by zero, overflow, underflow, inexact}
|
|
|
|
|
|
|
|
logic [`NF-1:0] ResultFrac; // Result fraction
|
|
logic [`NE-1:0] ResultExp; // Result exponent
|
|
logic ResultSgn, ResultSgnTmp; // Result sign
|
|
logic [`NE+1:0] SumExp; // exponent of the normalized sum
|
|
logic [`NE+1:0] FullResultExp; // ResultExp with bits to determine sign and overflow
|
|
logic [`NF+2:0] NormSum; // normalized sum
|
|
logic NormSumSticky; // sticky bit calulated from the normalized sum
|
|
logic SumZero; // is the sum zero
|
|
logic ResultDenorm; // is the result denormalized
|
|
logic Sticky, UfSticky; // Sticky bit
|
|
logic CalcPlus1; // do you add or subtract one for rounding
|
|
logic UfPlus1; // do you add one (for determining underflow flag)
|
|
logic Invalid,Underflow,Overflow; // flags
|
|
logic Guard, Round; // bits needed to determine rounding
|
|
logic UfLSBNormSum; // bits needed to determine rounding for underflow flag
|
|
logic [`FLEN:0] RoundAdd; // how much to add to the result
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Normalization
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
normalize normalize(.SumM, .ZExpM, .ProdExpM, .NormCntM, .FmtM, .KillProdM, .AddendStickyM, .NormSum, .NegSumM,
|
|
.SumZero, .NormSumSticky, .UfSticky, .SumExp, .ResultDenorm);
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Rounding
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// round to nearest even
|
|
// round to zero
|
|
// round to -infinity
|
|
// round to infinity
|
|
// round to nearest max magnitude
|
|
|
|
fmaround fmaround(.FmtM, .FrmM, .Sticky, .UfSticky, .NormSum, .AddendStickyM, .NormSumSticky, .ZZeroM, .InvZM, .ResultSgnTmp, .SumExp,
|
|
.CalcPlus1, .UfPlus1, .FullResultExp, .ResultFrac, .ResultExp, .Round, .Guard, .RoundAdd, .UfLSBNormSum);
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Sign calculation
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
resultsign resultsign(.FrmM, .PSgnM, .ZSgnEffM, .Underflow, .InvZM, .NegSumM, .SumZero, .Mult, .ResultSgnTmp, .ResultSgn);
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Flags
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
fmaflags fmaflags(.XSNaNM, .YSNaNM, .ZSNaNM, .XInfM, .YInfM, .ZInfM, .XZeroM, .YZeroM,
|
|
.XNaNM, .YNaNM, .ZNaNM, .FullResultExp, .SumExp, .ZSgnEffM, .PSgnM, .Round, .Guard, .UfLSBNormSum, .Sticky, .UfPlus1,
|
|
.FmtM, .Invalid, .Overflow, .Underflow, .FMAFlgM);
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Select the result
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
resultselect resultselect(.XSgnM, .YSgnM, .XExpM, .YExpM, .ZExpM, .XManM, .YManM, .ZManM,
|
|
.FrmM, .FmtM, .AddendStickyM, .KillProdM, .XInfM, .YInfM, .ZInfM, .XNaNM, .YNaNM, .ZNaNM, .RoundAdd,
|
|
.ZSgnEffM, .PSgnM, .ResultSgn, .CalcPlus1, .Invalid, .Overflow, .Underflow,
|
|
.ResultDenorm, .ResultExp, .ResultFrac, .FMAResM);
|
|
|
|
// *** use NF where needed
|
|
|
|
endmodule
|
|
|
|
module resultsign(
|
|
input logic [2:0] FrmM,
|
|
input logic PSgnM, ZSgnEffM,
|
|
input logic Underflow,
|
|
input logic InvZM,
|
|
input logic NegSumM,
|
|
input logic SumZero,
|
|
input logic Mult,
|
|
output logic ResultSgnTmp,
|
|
output logic ResultSgn
|
|
);
|
|
|
|
logic ZeroSgn;
|
|
// logic ResultSgnTmp;
|
|
|
|
// Determine the sign if the sum is zero
|
|
// if cancelation then 0 unless round to -infinity
|
|
// if multiply then Psgn
|
|
// otherwise psign
|
|
assign ZeroSgn = (PSgnM^ZSgnEffM)&~Underflow&~Mult ? FrmM[1:0] == 2'b10 : PSgnM;
|
|
|
|
// is the result negitive
|
|
// if p - z is the Sum negitive
|
|
// if -p + z is the Sum positive
|
|
// if -p - z then the Sum is negitive
|
|
assign ResultSgnTmp = InvZM&(ZSgnEffM)&NegSumM | InvZM&PSgnM&~NegSumM | ((ZSgnEffM)&PSgnM);
|
|
assign ResultSgn = SumZero ? ZeroSgn : ResultSgnTmp;
|
|
|
|
endmodule
|
|
|
|
|
|
module normalize(
|
|
input logic [3*`NF+5:0] SumM, // the positive sum
|
|
input logic [`NE-1:0] ZExpM, // exponent of Z
|
|
input logic [`NE+1:0] ProdExpM, // X exponent + Y exponent - bias
|
|
input logic [8:0] NormCntM, // normalization shift count
|
|
input logic FmtM, // precision 1 = double 0 = single
|
|
input logic KillProdM, // is the product set to zero
|
|
input logic AddendStickyM, // the sticky bit caclulated from the aligned addend
|
|
input logic NegSumM, // was the sum negitive
|
|
output logic [`NF+2:0] NormSum, // normalized sum
|
|
output logic SumZero, // is the sum zero
|
|
output logic NormSumSticky, UfSticky, // sticky bits
|
|
output logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
|
output logic ResultDenorm // is the result denormalized
|
|
);
|
|
logic [`NE+1:0] SumExpTmp; // exponent of the normalized sum not taking into account denormal or zero results
|
|
logic [8:0] DenormShift; // right shift if the result is denormalized //***change this later
|
|
logic [3*`NF+5:0] CorrSumShifted; // the shifted sum after LZA correction
|
|
logic [3*`NF+8:0] SumShifted; // the shifted sum before LZA correction
|
|
logic [`NE+1:0] SumExpTmpTmp; // the exponent of the normalized sum with the `FLEN bias
|
|
logic PreResultDenorm; // is the result denormalized - calculated before LZA corection
|
|
logic PreResultDenorm2; // is the result denormalized - calculated before LZA corection
|
|
logic LZAPlus1, LZAPlus2; // add one or two to the sum's exponent due to LZA correction
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Normalization
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Determine if the sum is zero
|
|
assign SumZero = ~(|SumM);
|
|
|
|
// calculate the sum's exponent
|
|
assign SumExpTmpTmp = KillProdM ? {2'b0, ZExpM} : ProdExpM + -({4'b0, NormCntM} + 1 - (`NF+4));
|
|
assign SumExpTmp = FmtM ? SumExpTmpTmp : (SumExpTmpTmp-1023+127)&{`NE+2{|SumExpTmpTmp}};
|
|
|
|
logic SumDLTEZ, SumDGEFL, SumSLTEZ, SumSGEFL;
|
|
assign SumDLTEZ = SumExpTmpTmp[`NE+1] | ~|SumExpTmpTmp;
|
|
assign SumDGEFL = ($signed(SumExpTmpTmp)>=$signed(-(13'd`NF+13'd2)));
|
|
assign SumSLTEZ = $signed(SumExpTmpTmp) <= $signed(13'd1023-13'd127);
|
|
assign SumSGEFL = ($signed(SumExpTmpTmp)>=$signed(-13'd25+13'd1023-13'd127)) | ~|SumExpTmpTmp;
|
|
assign PreResultDenorm2 = (FmtM ? SumDLTEZ : SumSLTEZ) & (FmtM ? SumDGEFL : SumSGEFL) & ~SumZero;
|
|
|
|
// 010. when should be 001.
|
|
// - shift left one
|
|
// - add one from exp
|
|
// - if kill prod dont add to exp
|
|
|
|
// Determine if the result is denormal
|
|
// assign PreResultDenorm = $signed(SumExpTmp)<=0 & ($signed(SumExpTmp)>=$signed(-FracLen)) & ~SumZero;
|
|
|
|
// Determine the shift needed for denormal results
|
|
// - if not denorm add 1 to shift out the leading 1
|
|
assign DenormShift = PreResultDenorm2 ? SumExpTmp[8:0] : 1;
|
|
// Normalize the sum
|
|
assign SumShifted = {3'b0, SumM} << NormCntM+DenormShift;
|
|
// LZA correction
|
|
assign LZAPlus1 = SumShifted[3*`NF+7];
|
|
assign LZAPlus2 = SumShifted[3*`NF+8];
|
|
// the only possible mantissa for a plus two is all zeroes - a one has to propigate all the way through a sum. so we can leave the bottom statement alone
|
|
assign CorrSumShifted = LZAPlus1&~KillProdM ? SumShifted[3*`NF+6:1] : SumShifted[3*`NF+5:0];
|
|
assign NormSum = CorrSumShifted[3*`NF+5:2*`NF+3];
|
|
// Calculate the sticky bit
|
|
assign NormSumSticky = (|CorrSumShifted[2*`NF+2:0]) | (|CorrSumShifted[136:2*`NF+3]&~FmtM);
|
|
assign UfSticky = AddendStickyM | NormSumSticky;
|
|
|
|
// Determine sum's exponent
|
|
// if plus1 If plus2 if said denorm but norm plus 1 if said denorm but norm plus 2
|
|
assign SumExp = (SumExpTmp+{12'b0, LZAPlus1&~KillProdM}+{11'b0, LZAPlus2&~KillProdM, 1'b0}+{12'b0, ~ResultDenorm&PreResultDenorm2&~KillProdM}+{12'b0, &SumExpTmp&SumShifted[3*`NF+6]&~KillProdM}) & {`NE+2{~(SumZero|ResultDenorm)}};
|
|
// recalculate if the result is denormalized
|
|
assign ResultDenorm = PreResultDenorm2&~SumShifted[3*`NF+6]&~SumShifted[3*`NF+7];
|
|
|
|
endmodule
|
|
|
|
module fmaround(
|
|
input logic FmtM, // precision 1 = double 0 = single
|
|
input logic [2:0] FrmM, // rounding mode
|
|
input logic UfSticky, // sticky bit for underlow calculation
|
|
input logic [`NF+2:0] NormSum, // normalized sum
|
|
input logic AddendStickyM, // addend's sticky bit
|
|
input logic NormSumSticky, // normalized sum's sticky bit
|
|
input logic ZZeroM, // is Z zero
|
|
input logic InvZM, // invert Z
|
|
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
|
input logic ResultSgnTmp, // the result's sign
|
|
output logic CalcPlus1, UfPlus1, // do you add or subtract on from the result
|
|
output logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
|
|
output logic [`NF-1:0] ResultFrac, // Result fraction
|
|
output logic [`NE-1:0] ResultExp, // Result exponent
|
|
output logic Sticky, // sticky bit
|
|
output logic [`FLEN:0] RoundAdd, // how much to add to the result
|
|
output logic Round, Guard, UfLSBNormSum // bits needed to calculate rounding
|
|
);
|
|
logic LSBNormSum; // bit used for rounding - least significant bit of the normalized sum
|
|
logic SubBySmallNum, UfSubBySmallNum; // was there supposed to be a subtraction by a small number
|
|
logic UfGuard; // guard bit used to caluculate underflow
|
|
logic UfCalcPlus1, CalcMinus1, Plus1, Minus1; // do you add or subtract on from the result
|
|
logic [`NF-1:0] NormSumTruncated; // the normalized sum trimed to fit the mantissa
|
|
logic UfRound;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Rounding
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// round to nearest even
|
|
// {Guard, Round, Sticky}
|
|
// 0xx - do nothing
|
|
// 100 - tie - Plus1 if result is odd (LSBNormSum = 1)
|
|
// - don't add 1 if a small number was supposed to be subtracted
|
|
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
|
|
// 110/111 - Plus1
|
|
|
|
// round to zero - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
|
|
|
|
// round to -infinity
|
|
// - Plus1 if negative unless a small number was supposed to be subtracted from a result with guard and round bits of 0
|
|
// - subtract 1 if a small number was supposed to be subtracted from a positive result with guard and round bits of 0
|
|
|
|
// round to infinity
|
|
// - Plus1 if positive unless a small number was supposed to be subtracted from a result with guard and round bits of 0
|
|
// - subtract 1 if a small number was supposed to be subtracted from a negative result with guard and round bits of 0
|
|
|
|
// round to nearest max magnitude
|
|
// {Guard, Round, Sticky}
|
|
// 0xx - do nothing
|
|
// 100 - tie - Plus1
|
|
// - don't add 1 if a small number was supposed to be subtracted
|
|
// 101 - do nothing if a small number was supposed to subtracted (the sticky bit was set by the small number)
|
|
// 110/111 - Plus1
|
|
|
|
// determine guard, round, and least significant bit of the result
|
|
assign Guard = FmtM ? NormSum[2] : NormSum[31];
|
|
assign Round = FmtM ? NormSum[1] : NormSum[30];
|
|
assign LSBNormSum = FmtM ? NormSum[3] : NormSum[32];
|
|
|
|
// used to determine underflow flag
|
|
assign UfGuard = FmtM ? NormSum[1] : NormSum[30];
|
|
assign UfRound = FmtM ? NormSum[0] : NormSum[29];
|
|
assign UfLSBNormSum = FmtM ? NormSum[2] : NormSum[31];
|
|
|
|
// determine sticky
|
|
assign Sticky = UfSticky | NormSum[0];
|
|
// Deterimine if a small number was supposed to be subtrated
|
|
assign SubBySmallNum = AddendStickyM & InvZM & ~(NormSumSticky|UfRound) & ~ZZeroM; //***here
|
|
assign UfSubBySmallNum = AddendStickyM & InvZM & ~(NormSumSticky) & ~ZZeroM; //***here
|
|
|
|
always_comb begin
|
|
// Determine if you add 1
|
|
case (FrmM)
|
|
3'b000: CalcPlus1 = Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&LSBNormSum&~SubBySmallNum));//round to nearest even
|
|
3'b001: CalcPlus1 = 0;//round to zero
|
|
3'b010: CalcPlus1 = ResultSgnTmp & ~(SubBySmallNum & ~Guard & ~Round);//round down
|
|
3'b011: CalcPlus1 = ~ResultSgnTmp & ~(SubBySmallNum & ~Guard & ~Round);//round up
|
|
3'b100: CalcPlus1 = (Guard & (Round | ((Sticky)&~(~Round&SubBySmallNum)) | (~Round&~(Sticky)&~SubBySmallNum)));//round to nearest max magnitude
|
|
default: CalcPlus1 = 1'bx;
|
|
endcase
|
|
// Determine if you add 1 (for underflow flag)
|
|
case (FrmM)
|
|
3'b000: UfCalcPlus1 = UfGuard & (UfRound | (UfSticky&UfRound|~UfSubBySmallNum) | (~Sticky&UfLSBNormSum&~UfSubBySmallNum));//round to nearest even
|
|
3'b001: UfCalcPlus1 = 0;//round to zero
|
|
3'b010: UfCalcPlus1 = ResultSgnTmp & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round down
|
|
3'b011: UfCalcPlus1 = ~ResultSgnTmp & ~(UfSubBySmallNum & ~UfGuard & ~UfRound);//round up
|
|
3'b100: UfCalcPlus1 = (UfGuard & (UfRound | (UfSticky&~(~UfRound&UfSubBySmallNum)) | (~Sticky&~UfSubBySmallNum)));//round to nearest max magnitude
|
|
default: UfCalcPlus1 = 1'bx;
|
|
endcase
|
|
// Determine if you subtract 1
|
|
case (FrmM)
|
|
3'b000: CalcMinus1 = 0;//round to nearest even
|
|
3'b001: CalcMinus1 = SubBySmallNum & ~Guard & ~Round;//round to zero
|
|
3'b010: CalcMinus1 = ~ResultSgnTmp & ~Guard & ~Round & SubBySmallNum;//round down
|
|
3'b011: CalcMinus1 = ResultSgnTmp & ~Guard & ~Round & SubBySmallNum;//round up
|
|
3'b100: CalcMinus1 = 0;//round to nearest max magnitude
|
|
default: CalcMinus1 = 1'bx;
|
|
endcase
|
|
|
|
end
|
|
|
|
// If an answer is exact don't round
|
|
assign Plus1 = CalcPlus1 & (Sticky | Guard | Round);
|
|
assign UfPlus1 = UfCalcPlus1 & (Sticky | UfGuard);//UfRound is part of sticky
|
|
assign Minus1 = CalcMinus1 & (Sticky | Guard | Round);
|
|
|
|
// Compute rounded result
|
|
assign RoundAdd = FmtM ? Minus1 ? {`FLEN+1{1'b1}} : {{{`FLEN{1'b0}}}, Plus1} :
|
|
Minus1 ? {{36{1'b1}}, 29'b0} : {35'b0, Plus1, 29'b0};
|
|
assign NormSumTruncated = {NormSum[`NF+2:32], NormSum[31:3]&{29{FmtM}}};
|
|
|
|
assign {FullResultExp, ResultFrac} = {SumExp, NormSumTruncated} + RoundAdd;
|
|
assign ResultExp = FullResultExp[`NE-1:0];
|
|
|
|
|
|
endmodule
|
|
|
|
module fmaflags(
|
|
input logic XSNaNM, YSNaNM, ZSNaNM, // inputs are signaling NaNs
|
|
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
|
input logic XZeroM, YZeroM, // inputs are zero
|
|
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
|
input logic [`NE+1:0] FullResultExp, // ResultExp with bits to determine sign and overflow
|
|
input logic [`NE+1:0] SumExp, // exponent of the normalized sum
|
|
input logic ZSgnEffM, PSgnM, // the product and modified Z signs
|
|
input logic Round, Guard, UfLSBNormSum, Sticky, UfPlus1, // bits used to determine rounding
|
|
input logic FmtM, // precision 1 = double 0 = single
|
|
output logic Invalid, Overflow, Underflow, // flags used to select the result
|
|
output logic [4:0] FMAFlgM // FMA flags
|
|
);
|
|
logic SigNaN; // is an input a signaling NaN
|
|
logic GtMaxExp; // is exponent greater than the maximum
|
|
logic UnderflowFlag, Inexact; // flags
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Flags
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Set Invalid flag for following cases:
|
|
// 1) any input is a signaling NaN
|
|
// 2) Inf - Inf (unless x or y is NaN)
|
|
// 3) 0 * Inf
|
|
|
|
assign SigNaN = XSNaNM | YSNaNM | ZSNaNM;
|
|
assign Invalid = SigNaN | ((XInfM || YInfM) & ZInfM & (PSgnM ^ ZSgnEffM) & ~XNaNM & ~YNaNM) | (XZeroM & YInfM) | (YZeroM & XInfM);
|
|
|
|
// Set Overflow flag if the number is too big to be represented
|
|
// - Don't set the overflow flag if an overflowed result isn't outputed
|
|
assign GtMaxExp = FmtM ? &FullResultExp[`NE-1:0] | FullResultExp[`NE] : &FullResultExp[7:0] | FullResultExp[8];
|
|
assign Overflow = GtMaxExp & ~FullResultExp[`NE+1]&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
|
|
|
|
// Set Underflow flag if the number is too small to be represented in normal numbers
|
|
// - Don't set the underflow flag if the result is exact
|
|
|
|
assign Underflow = (SumExp[`NE+1] | ((SumExp == 0) & (Round|Guard|Sticky)))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
|
|
assign UnderflowFlag = (FullResultExp[`NE+1] | ((FullResultExp == 0) | ((FullResultExp == 1) & (SumExp == 0) & ~(UfPlus1&UfLSBNormSum)))&(Round|Guard|Sticky))&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
|
|
// Set Inexact flag if the result is diffrent from what would be outputed given infinite precision
|
|
// - Don't set the underflow flag if an underflowed result isn't outputed
|
|
assign Inexact = (Sticky|Overflow|Guard|Round|Underflow)&~(XNaNM|YNaNM|ZNaNM|XInfM|YInfM|ZInfM);
|
|
|
|
// Combine flags
|
|
// - FMA can't set the Divide by zero flag
|
|
// - Don't set the underflow flag if the result was rounded up to a normal number
|
|
assign FMAFlgM = {Invalid, 1'b0, Overflow, UnderflowFlag, Inexact};
|
|
|
|
endmodule
|
|
|
|
|
|
module resultselect(
|
|
input logic XSgnM, YSgnM, // input signs
|
|
input logic [`NE-1:0] XExpM, YExpM, ZExpM, // input exponents
|
|
input logic [`NF:0] XManM, YManM, ZManM, // input mantissas
|
|
input logic [2:0] FrmM, // rounding mode 000 = rount to nearest, ties to even 001 = round twords zero 010 = round down 011 = round up 100 = round to nearest, ties to max magnitude
|
|
input logic FmtM, // precision 1 = double 0 = single
|
|
input logic AddendStickyM, // sticky bit that is calculated during alignment
|
|
input logic KillProdM, // set the product to zero before addition if the product is too small to matter
|
|
input logic XInfM, YInfM, ZInfM, // inputs are infinity
|
|
input logic XNaNM, YNaNM, ZNaNM, // inputs are NaN
|
|
input logic ZSgnEffM, // the modified Z sign - depends on instruction
|
|
input logic PSgnM, // the product's sign
|
|
input logic ResultSgn, // the result's sign
|
|
input logic CalcPlus1, // rounding bits
|
|
input logic [`FLEN:0] RoundAdd, // how much to add to the result
|
|
input logic Invalid, Overflow, Underflow, // flags
|
|
input logic ResultDenorm, // is the result denormalized
|
|
input logic [`NE-1:0] ResultExp, // Result exponent
|
|
input logic [`NF-1:0] ResultFrac, // Result fraction
|
|
output logic [`FLEN-1:0] FMAResM // FMA final result
|
|
);
|
|
logic [`FLEN-1:0] XNaNResult, YNaNResult, ZNaNResult, InvalidResult, OverflowResult, KillProdResult, UnderflowResult; // possible results
|
|
|
|
if(`IEEE754) begin
|
|
assign XNaNResult = FmtM ? {XSgnM, XExpM, 1'b1, XManM[`NF-2:0]} : {{32{1'b1}}, XSgnM, XExpM[7:0], 1'b1, XManM[50:29]};
|
|
assign YNaNResult = FmtM ? {YSgnM, YExpM, 1'b1, YManM[`NF-2:0]} : {{32{1'b1}}, YSgnM, YExpM[7:0], 1'b1, YManM[50:29]};
|
|
assign ZNaNResult = FmtM ? {ZSgnEffM, ZExpM, 1'b1, ZManM[`NF-2:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], 1'b1, ZManM[50:29]};
|
|
assign InvalidResult = FmtM ? {ResultSgn, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, ResultSgn, 8'hff, 1'b1, 22'b0};
|
|
end else begin
|
|
assign XNaNResult = FmtM ? {1'b0, XExpM, 1'b1, 51'b0} : {{32{1'b1}}, 1'b0, XExpM[7:0], 1'b1, 22'b0};
|
|
assign YNaNResult = FmtM ? {1'b0, YExpM, 1'b1, 51'b0} : {{32{1'b1}}, 1'b0, YExpM[7:0], 1'b1, 22'b0};
|
|
assign ZNaNResult = FmtM ? {1'b0, ZExpM, 1'b1, 51'b0} : {{32{1'b1}}, 1'b0, ZExpM[7:0], 1'b1, 22'b0};
|
|
assign InvalidResult = FmtM ? {1'b0, {`NE{1'b1}}, 1'b1, {`NF-1{1'b0}}} : {{32{1'b1}}, 1'b0, 8'hff, 1'b1, 22'b0};
|
|
end
|
|
|
|
assign OverflowResult = FmtM ? ((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {ResultSgn, {`NE-1{1'b1}}, 1'b0, {`NF{1'b1}}} :
|
|
{ResultSgn, {`NE{1'b1}}, {`NF{1'b0}}} :
|
|
((FrmM[1:0]==2'b01) | (FrmM[1:0]==2'b10&~ResultSgn) | (FrmM[1:0]==2'b11&ResultSgn)) ? {{32{1'b1}}, ResultSgn, 8'hfe, {23{1'b1}}} :
|
|
{{32{1'b1}}, ResultSgn, 8'hff, 23'b0};
|
|
assign KillProdResult = FmtM ? {ResultSgn, {ZExpM, ZManM[`NF-1:0]} + (RoundAdd[`FLEN-2:0]&{`FLEN-1{AddendStickyM}})} : {{32{1'b1}}, ResultSgn, {ZExpM[`NE-1],ZExpM[6:0], ZManM[51:29]} + (RoundAdd[59:29]&{31{AddendStickyM}})};
|
|
assign UnderflowResult = FmtM ? {ResultSgn, {`FLEN-1{1'b0}}} + {63'b0,(CalcPlus1&(AddendStickyM|FrmM[1]))} : {{32{1'b1}}, {ResultSgn, 31'b0} + {31'b0, (CalcPlus1&(AddendStickyM|FrmM[1]))}};
|
|
assign FMAResM = XNaNM ? XNaNResult :
|
|
YNaNM ? YNaNResult :
|
|
ZNaNM ? ZNaNResult :
|
|
Invalid ? InvalidResult :
|
|
XInfM ? FmtM ? {PSgnM, XExpM, XManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, XExpM[7:0], XManM[51:29]} :
|
|
YInfM ? FmtM ? {PSgnM, YExpM, YManM[`NF-1:0]} : {{32{1'b1}}, PSgnM, YExpM[7:0], YManM[51:29]} :
|
|
ZInfM ? FmtM ? {ZSgnEffM, ZExpM, ZManM[`NF-1:0]} : {{32{1'b1}}, ZSgnEffM, ZExpM[7:0], ZManM[51:29]} :
|
|
KillProdM ? KillProdResult :
|
|
Overflow ? OverflowResult :
|
|
Underflow & ~ResultDenorm & (ResultExp!=1) ? UnderflowResult :
|
|
FmtM ? {ResultSgn, ResultExp, ResultFrac} :
|
|
{{32{1'b1}}, ResultSgn, ResultExp[7:0], ResultFrac[51:29]};
|
|
|
|
endmodule |