cvw/wally-pipelined/src/muldiv/intdivrestoring.sv

123 lines
5.4 KiB
Systemverilog

///////////////////////////////////////////
// intdivrestoring.sv
//
// Written: David_Harris@hmc.edu 12 September 2021
// Modified:
//
// Purpose: Restoring integer division using a shift register and subtractor
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
/* verilator lint_off UNOPTFLAT */
module intdivrestoring (
input logic clk,
input logic reset,
input logic StallM, FlushM,
input logic SignedDivideE,
input logic StartDivideE,
input logic [`XLEN-1:0] XE, DE,
output logic BusyE, DivDoneM,
output logic [`XLEN-1:0] QuotM, RemM
);
logic [`XLEN-1:0] WE[`DIV_BITSPERCYCLE:0];
logic [`XLEN-1:0] XQE[`DIV_BITSPERCYCLE:0];
logic [`XLEN-1:0] DSavedE, XSavedE, XSavedM, DnE, DAbsBE, XnE, XInitE, WM, XQM, WnM, XQnM;
localparam STEPBITS = $clog2(`XLEN/`DIV_BITSPERCYCLE);
logic [STEPBITS:0] step;
logic Div0E, Div0M;
logic DivInitE, SignXE, SignXM, SignDE, SignDM, NegWM, NegQM;
logic SignedDivideM;
// save inputs on the negative edge of the execute clock.
// This is unusual practice, but the inputs are not guaranteed to be stable due to some hazard and forwarding logic.
// Saving the inputs is the most hardware-efficient way to fix the issue.
flopen #(`XLEN) dsavereg(~clk, StartDivideE, DE, DSavedE);
flopen #(`XLEN) xsavereg(~clk, StartDivideE, XE, XSavedE);
assign SignDE = DSavedE[`XLEN-1];
assign SignXE = XSavedE[`XLEN-1];
assign Div0E = (DSavedE == 0);
// pipeline registers
flopenrc #(1) SignedDivideMReg(clk, reset, FlushM, ~StallM, SignedDivideE, SignedDivideM);
flopenrc #(1) Div0eMReg(clk, reset, FlushM, ~StallM, Div0E, Div0M);
flopenrc #(1) SignDMReg(clk, reset, FlushM, ~StallM, SignDE, SignDM);
flopenrc #(1) SignXMReg(clk, reset, FlushM, ~StallM, SignXE, SignXM);
flopenrc #(`XLEN) XSavedMReg(clk, reset, FlushM, ~StallM, XSavedE, XSavedM); // is this truly necessary?
// Take absolute value for signed operations, and negate D to handle subtraction in divider stages
neg #(`XLEN) negd(DSavedE, DnE);
mux2 #(`XLEN) dabsmux(DnE, DSavedE, SignedDivideE & SignDE, DAbsBE); // take absolute value for signed operations, and negate for subtraction setp
neg #(`XLEN) negx(XSavedE, XnE);
mux2 #(`XLEN) xabsmux(XSavedE, XnE, SignedDivideE & SignXE, XInitE); // need original X as remainder if doing divide by 0
// initialization multiplexers on first cycle of operation (one cycle after start is asserted)
mux2 #(`XLEN) wmux(WM, {`XLEN{1'b0}}, DivInitE, WE[0]);
mux2 #(`XLEN) xmux(XQM, XInitE, DivInitE, XQE[0]);
// one copy of divstep for each bit produced per cycle
generate
genvar i;
for (i=0; i<`DIV_BITSPERCYCLE; i = i+1)
intdivrestoringstep divstep(WE[i], XQE[i], DAbsBE, WE[i+1], XQE[i+1]);
endgenerate
// registers after division steps
flopen #(`XLEN) wreg(clk, BusyE, WE[`DIV_BITSPERCYCLE], WM);
flopen #(`XLEN) xreg(clk, BusyE, XQE[`DIV_BITSPERCYCLE], XQM);
// Output selection logic in Memory Stage
// On final setp of signed operations, negate outputs as needed
assign NegWM = SignedDivideM & SignXM;
assign NegQM = SignedDivideM & (SignXM ^ SignDM);
neg #(`XLEN) wneg(WM, WnM);
neg #(`XLEN) qneg(XQM, XQnM);
// Select appropriate output: normal, negated, or for divide by zero
mux3 #(`XLEN) qmux(XQM, XQnM, {`XLEN{1'b1}}, {Div0M, NegQM}, QuotM); // Q taken from XQ register, negated if necessary, or all 1s when dividing by zero
mux3 #(`XLEN) remmux(WM, WnM, XSavedM, {Div0M, NegWM}, RemM); // REM taken from W register, negated if necessary, or from X when dividing by zero
// verify it's really necessary to have XSavedM
// Divider FSM to sequence Init, Busy, and Done
always_ff @(posedge clk)
if (reset) begin
BusyE = 0; DivDoneM = 0; step = 0; DivInitE = 0;
end else if (StartDivideE & ~StallM) begin
if (Div0E) DivDoneM = 1;
else begin
BusyE = 1; step = 0; DivInitE = 1;
end
end else if (BusyE & ~DivDoneM) begin // pause one cycle at beginning of signed operations for absolute value
DivInitE = 0;
step = step + 1;
if (step[STEPBITS]) begin
step = 0;
BusyE = 0;
DivDoneM = 1;
end
end else if (DivDoneM) begin
DivDoneM = 0;
BusyE = 0;
end
endmodule
/* verilator lint_on UNOPTFLAT */