cvw/wally-pipelined/src/fpu/exception_div.sv
2021-04-04 18:09:13 +00:00

97 lines
3.8 KiB
Systemverilog
Executable File

// Exception logic for the floating point adder. Note: We may
// actually want to move to where the result is computed.
module exception_div (Ztype, Invalid, Denorm, ANorm, BNorm, A, B, op_type);
input [63:0] A; // 1st input operand (op1)
input [63:0] B; // 2nd input operand (op2)
input op_type; // Determine operation
output [2:0] Ztype; // Indicates type of result (Z)
output Invalid; // Invalid operation exception
output Denorm; // Denormalized input
output ANorm; // A is not zero or Denorm
output BNorm; // B is not zero or Denorm
wire AzeroM; // '1' if the mantissa of A is zero
wire BzeroM; // '1' if the mantissa of B is zero
wire AzeroE; // '1' if the exponent of A is zero
wire BzeroE; // '1' if the exponent of B is zero
wire AonesE; // '1' if the exponent of A is all ones
wire BonesE; // '1' if the exponent of B is all ones
wire ADenorm; // '1' if A is a denomalized number
wire BDenorm; // '1' if B is a denomalized number
wire AInf; // '1' if A is infinite
wire BInf; // '1' if B is infinite
wire AZero; // '1' if A is 0
wire BZero; // '1' if B is 0
wire ANaN; // '1' if A is a not-a-number
wire BNaN; // '1' if B is a not-a-number
wire ASNaN; // '1' if A is a signalling not-a-number
wire BSNaN; // '1' if B is a signalling not-a-number
wire ZQNaN; // '1' if result Z is a quiet NaN
wire ZInf; // '1' if result Z is an infnity
wire square_root; // '1' if square root operation
wire Zero; // '1' if result is zero
parameter [51:0] fifty_two_zeros = 52'h0; // Use parameter?
// Determine if mantissas are all zeros
assign AzeroM = (A[51:0] == fifty_two_zeros);
assign BzeroM = (B[51:0] == fifty_two_zeros);
// Determine if exponents are all ones or all zeros
assign AonesE = A[62]&A[61]&A[60]&A[59]&A[58]&A[57]&A[56]&A[55]&A[54]&A[53]&A[52];
assign BonesE = B[62]&B[61]&B[60]&B[59]&B[58]&B[57]&B[56]&B[55]&B[54]&B[53]&B[52];
assign AzeroE = ~(A[62]|A[61]|A[60]|A[59]|A[58]|A[57]|A[56]|A[55]|A[54]|A[53]|A[52]);
assign BzeroE = ~(B[62]|B[61]|B[60]|B[59]|B[58]|B[57]|B[56]|B[55]|B[54]|B[53]|B[52]);
// Determine special cases. Note: Zero is not really a special case.
assign ADenorm = AzeroE & ~AzeroM;
assign BDenorm = BzeroE & ~BzeroM;
assign AInf = AonesE & AzeroM;
assign BInf = BonesE & BzeroM;
assign ANaN = AonesE & ~AzeroM;
assign BNaN = BonesE & ~BzeroM;
assign ASNaN = ANaN & A[50];
assign BSNaN = ANaN & A[50];
assign AZero = AzeroE & AzeroM;
assign BZero = BzeroE & BzeroE;
// A and B are normalized if their exponents are not zero.
assign ANorm = ~AzeroE;
assign BNorm = ~BzeroE;
// An "Invalid Operation" exception occurs if (A or B is a signalling NaN)
// or (A and B are both Infinite)
assign Invalid = ASNaN | BSNaN | (((AInf & BInf) | (AZero & BZero))&~op_type) |
(A[63] & op_type);
// The Denorm flag is set if A is denormlized or if B is normalized
assign Denorm = ADenorm | BDenorm;
// The result is a quiet NaN if (an "Invalid Operation" exception occurs)
// or (A is a NaN) or (B is a NaN).
assign ZQNaN = Invalid | ANaN | BNaN;
// The result is zero
assign Zero = (AZero | BInf)&~op_type | AZero&op_type;
// The result is +Inf if ((A is Inf) or (B is 0)) and (the
// result is not a quiet NaN).
assign ZInf = (AInf | BZero)&~ZQNaN&~op_type | AInf&op_type&~ZQNaN;
// Set the type of the result as follows:
// Ztype Result
// 000 Normal
// 001 Quiet NaN
// 010 Infinity
// 011 Zero
// 110 DivZero
assign Ztype[0] = ZQNaN | Zero;
assign Ztype[1] = ZInf | Zero;
assign Ztype[2] = BZero&~op_type;
endmodule // exception