cvw/src/fpu/fma/fmaalign.sv
2024-01-15 07:15:23 -08:00

91 lines
3.9 KiB
Systemverilog

///////////////////////////////////////////
// fmaalign.sv
//
// Written: 6/23/2021 me@KatherineParry.com, David_Harris@hmc.edu
// Modified:
//
// Purpose: FMA alginment shift
//
// Documentation: RISC-V System on Chip Design Chapter 13 (Table 13.10)
//
// A component of the CORE-V-WALLY configurable RISC-V project.
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
module fmaalign import cvw::*; #(parameter cvw_t P) (
input logic [P.NE-1:0] Xe, Ye, Ze, // biased exponents in B(NE.0) format
input logic [P.NF:0] Zm, // significand in U(0.NF) format]
input logic XZero, YZero, ZZero, // is the input zero
output logic [3*P.NF+3:0] Am, // addend aligned for addition in U(NF+5.2NF+1)
output logic ASticky, // Sticky bit calculated from the aliged addend
output logic KillProd // should the product be set to zero
);
logic [P.NE+1:0] ACnt; // how far to shift the addend to align with the product in Q(NE+2.0) format
logic [4*P.NF+3:0] ZmShifted; // output of the alignment shifter including sticky bits U(NF+5.3NF+1)
logic [4*P.NF+3:0] ZmPreshifted; // input to the alignment shifter U(NF+5.3NF+1)
logic KillZ; // should the addend be killed
///////////////////////////////////////////////////////////////////////////////
// Alignment shifter
///////////////////////////////////////////////////////////////////////////////
// determine the shift count for alignment
// - negative means Z is larger, so shift Z left
// - positive means the product is larger, so shift Z right
// This could have been done using Pe, but ACnt is on the critical path so we replicate logic for speed
assign ACnt = {2'b0, Xe} + {2'b0, Ye} - {2'b0, (P.NE)'(P.BIAS)} + (P.NE+2)'(P.NF+2) - {2'b0, Ze};
// Default Addition with only inital left shift
// | 53'b0 | 106'b(product) | 1'b0 |
// | addnend |
assign ZmPreshifted = {Zm,(3*P.NF+3)'(0)};
assign KillProd = (ACnt[P.NE+1]&~ZZero)|XZero|YZero;
assign KillZ = $signed(ACnt)>$signed((P.NE+2)'(3)*(P.NE+2)'(P.NF)+(P.NE+2)'(3));
always_comb begin
// If the product is too small to effect the sum, kill the product
// | 53'b0 | 106'b(product) | 1'b0 |
// | addnend |
if (KillProd) begin
ZmShifted = {(P.NF+2)'(0), Zm, (2*P.NF+1)'(0)};
ASticky = ~(XZero|YZero);
// If the addend is too small to effect the addition
// - The addend has to shift two past the end of the product to be considered too small
// - The 2 extra bits are needed for rounding
// | 53'b0 | 106'b(product) | 1'b0 |
// | addnend |
end else if (KillZ) begin
ZmShifted = 0;
ASticky = ~ZZero;
// If the Addend is shifted right
// | 53'b0 | 106'b(product) | 1'b0 |
// | addnend |
end else begin
ZmShifted = ZmPreshifted >> ACnt;
ASticky = |(ZmShifted[P.NF-1:0]);
end
end
assign Am = ZmShifted[4*P.NF+3:P.NF];
endmodule