cvw/synthDC/ppaAnalyze.py
2022-06-09 00:07:51 +00:00

568 lines
22 KiB
Python
Executable File

#!/usr/bin/python3
# Madeleine Masser-Frye mmasserfrye@hmc.edu 5/22
import scipy.optimize as opt
import subprocess
import csv
import re
from matplotlib.cbook import flatten
import matplotlib.pyplot as plt
import matplotlib.lines as lines
import numpy as np
from collections import namedtuple
import sklearn.metrics as skm
def synthsfromcsv(filename):
Synth = namedtuple("Synth", "module tech width freq delay area lpower denergy")
with open(filename, newline='') as csvfile:
csvreader = csv.reader(csvfile)
global allSynths
allSynths = list(csvreader)[1:]
for i in range(len(allSynths)):
for j in range(len(allSynths[0])):
try: allSynths[i][j] = int(allSynths[i][j])
except:
try: allSynths[i][j] = float(allSynths[i][j])
except: pass
allSynths[i] = Synth(*allSynths[i])
return allSynths
def synthsintocsv():
''' writes a CSV with one line for every available synthesis
each line contains the module, tech, width, target freq, and resulting metrics
'''
print("This takes a moment...")
bashCommand = "find . -path '*runs/ppa*rv32e*' -prune"
output = subprocess.check_output(['bash','-c', bashCommand])
allSynths = output.decode("utf-8").split('\n')[:-1]
specReg = re.compile('[a-zA-Z0-9]+')
metricReg = re.compile('-?\d+\.\d+[e]?[-+]?\d*')
file = open("ppaData.csv", "w")
writer = csv.writer(file)
writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (fJ)'])
for oneSynth in allSynths:
module, width, risc, tech, freq = specReg.findall(oneSynth)[2:7]
tech = tech[:-2]
metrics = []
for phrase in [['Path Slack', 'qor'], ['Design Area', 'qor'], ['100', 'power']]:
bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*'
bashCommand = bashCommand.format(*phrase)
try: output = subprocess.check_output(['bash','-c', bashCommand])
except:
print(module + width + tech + freq + " doesn't have reports")
print("Consider running cleanup() first")
nums = metricReg.findall(str(output))
nums = [float(m) for m in nums]
metrics += nums
delay = 1000/int(freq) - metrics[0]
area = metrics[1]
lpower = metrics[4]
denergy = (metrics[2] + metrics[3])*delay*1000 # (switching + internal powers)*delay, more practical units for regression coefs
if ('flop' in module): # since two flops in each module
[area, lpower, denergy] = [n/2 for n in [area, lpower, denergy]]
writer.writerow([module, tech, width, freq, delay, area, lpower, denergy])
file.close()
def cleanup():
''' removes runs that didn't work
'''
bashCommand = 'grep -r "Error" runs/ppa*/reports/*qor*'
try:
output = subprocess.check_output(['bash','-c', bashCommand])
allSynths = output.decode("utf-8").split('\n')[:-1]
for run in allSynths:
run = run.split('MHz')[0]
bc = 'rm -r '+ run + '*'
output = subprocess.check_output(['bash','-c', bc])
except: pass
bashCommand = "find . -path '*runs/ppa*rv32e*' -prune"
output = subprocess.check_output(['bash','-c', bashCommand])
allSynths = output.decode("utf-8").split('\n')[:-1]
for oneSynth in allSynths:
for phrase in [['Path Length', 'qor'], ['Design Area', 'qor'], ['100', 'power']]:
bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*'
bashCommand = bashCommand.format(*phrase)
try: output = subprocess.check_output(['bash','-c', bashCommand])
except:
bc = 'rm -r '+ oneSynth[2:]
try: output = subprocess.check_output(['bash','-c', bc])
except: pass
print("All cleaned up!")
def getVals(tech, module, var, freq=None):
''' for a specified tech, module, and variable/metric
returns a list of values for that metric in ascending width order
works at a specified target frequency or if none is given, uses the synthesis with the best achievable delay for each width
'''
metric = []
widthL = []
if (freq != None):
for oneSynth in allSynths:
if (oneSynth.freq == freq) & (oneSynth.tech == tech) & (oneSynth.module == module):
widthL += [oneSynth.width]
osdict = oneSynth._asdict()
metric += [osdict[var]]
metric = [x for _, x in sorted(zip(widthL, metric))] # ordering
else:
for w in widths:
for oneSynth in bestSynths:
if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == module):
osdict = oneSynth._asdict()
met = osdict[var]
metric += [met]
return metric
def csvOfBest():
bestSynths = []
for tech in [x.tech for x in techSpecs]:
for mod in modules:
for w in widths:
m = np.Inf # large number to start
best = None
if [mod, tech, w] in leftblue:
for oneSynth in allSynths:
if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == mod):
if (oneSynth.freq < m) & (1000/oneSynth.delay < oneSynth.freq):
if ([mod, tech, w] != ['mux2', 'sky90', 128]) or (oneSynth.area < 1100):
m = oneSynth.freq
best = oneSynth
else:
for oneSynth in allSynths:
if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == mod):
if (oneSynth.delay < m) & (1000/oneSynth.delay > oneSynth.freq):
m = oneSynth.delay
best = oneSynth
if (best != None) & (best not in bestSynths):
bestSynths += [best]
file = open("bestSynths.csv", "w")
writer = csv.writer(file)
writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (fJ)'])
for synth in bestSynths:
writer.writerow(list(synth))
file.close()
return bestSynths
def genLegend(fits, coefs, r2, spec, ale=False):
''' generates a list of two legend elements
labels line with fit equation and dots with tech and r squared of the fit
'''
coefsr = [str(round(c, 3)) for c in coefs]
eq = ''
ind = 0
eqDict = {'c': '', 'l': 'N', 's': '$N^2$', 'g': '$log_2$(N)', 'n': 'N$log_2$(N)'}
if ale:
if (normAddWidth == 32):
eqDict = {'c': '', 'l': '(N/32)', 's': '$(N/32)^2$', 'g': '$log_2$(N/32)', 'n': '(N/32)$log_2$(N/32)'}
elif normAddWidth != 1:
print('Legend equations are wrong')
for k in eqDict.keys():
if k in fits:
if str(coefsr[ind]) != '0.0': eq += " + " + coefsr[ind] + eqDict[k]
ind += 1
eq = eq[3:] # chop off leading ' + '
legend_elements = [lines.Line2D([0], [0], color=spec.color, label=eq)]
legend_elements += [lines.Line2D([0], [0], color=spec.color, ls='', marker=spec.shape, label=spec.tech +' $R^2$='+ str(round(r2, 4)))]
return legend_elements
def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn', norm=True, color=None):
''' module: string module name
freq: int freq (MHz)
var: string delay, area, lpower, or denergy
fits: constant, linear, square, log2, Nlog2
plots given variable vs width for all matching syntheses with regression
'''
singlePlot = True
if ax or (freq == 10):
singlePlot = False
if ax is None:
ax = plt.gca()
fullLeg = []
allWidths = []
allMetrics = []
ale = (var != 'delay') # if not delay, must be area, leakage, or energy
modFit = fitDict[mod]
fits = modFit[ale]
for spec in techSpecs:
metric = getVals(spec.tech, module, var, freq=freq)
if norm:
techdict = spec._asdict()
norm = techdict[var]
metric = [m/norm for m in metric]
if len(metric) == 5: # don't include the spec if we don't have points for all widths
xp, pred, coefs, r2 = regress(widths, metric, fits)
fullLeg += genLegend(fits, coefs, r2, spec, ale=ale)
c = color if color else spec.color
ax.scatter(widths, metric, color=c, marker=spec.shape)
ax.plot(xp, pred, color=c)
allWidths += widths
allMetrics += metric
combined = TechSpec('combined', 'red', '_', 0, 0, 0, 0)
xp, pred, coefs, r2 = regress(allWidths, allMetrics, fits)
leg = genLegend(fits, coefs, r2, combined, ale=ale)
fullLeg += leg
ax.plot(xp, pred, color='red')
if norm:
ylabeldic = {"lpower": "Leakage Power (add32)", "denergy": "Energy/Op (add32)", "area": "Area (add32)", "delay": "Delay (FO4)"}
else:
ylabeldic = {"lpower": "Leakage Power (nW)", "denergy": "Dynamic Energy (fJ)", "area": "Area (sq microns)", "delay": "Delay (ns)"}
ax.legend(handles=fullLeg)
ax.set_xticks(widths)
ax.set_xlabel("Width (bits)")
ax.set_ylabel(ylabeldic[var])
if (module in ['flop', 'csa']) & (var == 'delay'):
ax.set_ylim(ymin=0)
ytop = ax.get_ylim()[1]
ax.set_ylim(ymax=1.1*ytop)
if singlePlot:
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best achievable delay)"
ax.set_title(module + titleStr)
plt.savefig('./plots/PPA/'+ module + '_' + var + '.png')
# plt.show()
return fullLeg
def regress(widths, var, fits='clsgn'):
''' fits a curve to the given points
returns lists of x and y values to plot that curve and legend elements with the equation
'''
funcArr = genFuncs(fits)
widths = [w/normAddWidth for w in widths]
mat = []
for w in widths:
row = []
for func in funcArr:
row += [func(w)]
mat += [row]
y = np.array(var, dtype=np.float)
coefs = opt.nnls(mat, y)[0]
yp = []
for w in widths:
n = [func(w) for func in funcArr]
yp += [sum(np.multiply(coefs, n))]
r2 = skm.r2_score(y, yp)
xp = np.linspace(4, 140, 200)
pred = []
for x in xp:
n = [func(x/normAddWidth) for func in funcArr]
pred += [sum(np.multiply(coefs, n))]
return xp, pred, coefs, r2
def makeCoefTable():
'''
writes CSV with each line containing the coefficients for a regression fit
to a particular combination of module, metric (including both techs, normalized)
'''
file = open("ppaFitting.csv", "w")
writer = csv.writer(file)
writer.writerow(['Module', 'Metric', '1', 'N', 'N^2', 'log2(N)', 'Nlog2(N)', 'R^2'])
for module in modules:
for var in ['delay', 'area', 'lpower', 'denergy']:
ale = (var != 'delay')
metL = []
modFit = fitDict[module]
fits = modFit[ale]
for spec in techSpecs:
metric = getVals(spec.tech, module, var)
techdict = spec._asdict()
norm = techdict[var]
metL += [m/norm for m in metric]
xp, pred, coefs, r2 = regress(widths*2, metL, fits)
coefs = np.ndarray.tolist(coefs)
coefsToWrite = [None]*5
fitTerms = 'clsgn'
ind = 0
for i in range(len(fitTerms)):
if fitTerms[i] in fits:
coefsToWrite[i] = coefs[ind]
ind += 1
row = [module, var] + coefsToWrite + [r2]
writer.writerow(row)
file.close()
def genFuncs(fits='clsgn'):
''' helper function for regress()
returns array of functions with one for each term desired in the regression fit
'''
funcArr = []
if 'c' in fits:
funcArr += [lambda x: 1]
if 'l' in fits:
funcArr += [lambda x: x]
if 's' in fits:
funcArr += [lambda x: x**2]
if 'g' in fits:
funcArr += [lambda x: np.log2(x)]
if 'n' in fits:
funcArr += [lambda x: x*np.log2(x)]
return funcArr
def noOutliers(median, freqs, delays, areas):
''' returns a pared down list of freqs, delays, and areas
cuts out any syntheses in which target freq isn't within 75% of the min delay target to focus on interesting area
helper function to freqPlot()
'''
f=[]
d=[]
a=[]
for i in range(len(freqs)):
norm = freqs[i]/median
if (norm > 0.4) & (norm<1.4):
f += [freqs[i]]
d += [delays[i]]
a += [areas[i]]
return f, d, a
def freqPlot(tech, mod, width):
''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width
'''
freqsL, delaysL, areasL = ([[], []] for i in range(3))
for oneSynth in allSynths:
if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech):
ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period
freqsL[ind] += [oneSynth.freq]
delaysL[ind] += [oneSynth.delay]
areasL[ind] += [oneSynth.area]
median = np.median(list(flatten(freqsL)))
f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
for ax in (ax1, ax2): #, ax3, ax4):
ax.ticklabel_format(useOffset=False, style='plain')
for ind in [0,1]:
areas = areasL[ind]
delays = delaysL[ind]
freqs = freqsL[ind]
freqs, delays, areas = noOutliers(median, freqs, delays, areas) # comment out to see all syntheses
c = 'blue' if ind else 'green'
# adprod = adprodpow(areas, delays, 1)
# adpow = adprodpow(areas, delays, 2)
ax1.scatter(freqs, delays, color=c)
ax2.scatter(freqs, areas, color=c)
# ax3.scatter(freqs, adprod, color=c)
# ax4.scatter(freqs, adpow, color=c)
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'),
lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')]
ax1.legend(handles=legend_elements)
ax2.set_xlabel("Target Freq (MHz)")
ax1.set_ylabel('Delay (ns)')
ax2.set_ylabel('Area (sq microns)')
# ax3.set_ylabel('Area * Delay')
# ax4.set_ylabel('Area * $Delay^2$')
ax1.set_title(mod + '_' + str(width))
plt.savefig('./plots/freqBuckshot/' + tech + '/' + mod + '/' + str(width) + '.png')
# plt.show()
def squareAreaDelay(tech, mod, width):
''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width
'''
global allSynths
freqsL, delaysL, areasL = ([[], []] for i in range(3))
for oneSynth in allSynths:
if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech):
ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period
freqsL[ind] += [oneSynth.freq]
delaysL[ind] += [oneSynth.delay]
areasL[ind] += [oneSynth.area]
f, (ax1) = plt.subplots(1, 1)
ax2 = ax1.twinx()
for ind in [0,1]:
areas = areasL[ind]
delays = delaysL[ind]
targets = freqsL[ind]
targets = [1000/f for f in targets]
targets, delays, areas = noOutliers(targets, delays, areas) # comment out to see all
if not ind:
achievedDelays = delays
c = 'blue' if ind else 'green'
ax1.scatter(targets, delays, marker='^', color=c)
ax2.scatter(targets, areas, marker='s', color=c)
bestAchieved = min(achievedDelays)
legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='^', label='delay (timing achieved)'),
lines.Line2D([0], [0], color='green', ls='', marker='s', label='area (timing achieved)'),
lines.Line2D([0], [0], color='blue', ls='', marker='^', label='delay (timing violated)'),
lines.Line2D([0], [0], color='blue', ls='', marker='s', label='area (timing violated)')]
ax2.legend(handles=legend_elements, loc='upper left')
ax1.set_xlabel("Delay Targeted (ns)")
ax1.set_ylabel("Delay Achieved (ns)")
ax2.set_ylabel('Area (sq microns)')
ax1.set_title(mod + '_' + str(width))
squarify(f)
xvals = np.array(ax1.get_xlim())
frac = (min(flatten(delaysL))-xvals[0])/(xvals[1]-xvals[0])
areaLowerLim = min(flatten(areasL))-100
areaUpperLim = max(flatten(areasL))/frac + areaLowerLim
ax2.set_ylim([areaLowerLim, areaUpperLim])
ax1.plot(xvals, xvals, ls="--", c=".3")
ax1.hlines(y=bestAchieved, xmin=xvals[0], xmax=xvals[1], color="black", ls='--')
plt.savefig('./plots/squareareadelay_' + mod + '_' + str(width) + '.png')
# plt.show()
def squarify(fig):
''' helper function for squareAreaDelay()
forces matplotlib figure to be a square
'''
w, h = fig.get_size_inches()
if w > h:
t = fig.subplotpars.top
b = fig.subplotpars.bottom
axs = h*(t-b)
l = (1.-axs/w)/2
fig.subplots_adjust(left=l, right=1-l)
else:
t = fig.subplotpars.right
b = fig.subplotpars.left
axs = w*(t-b)
l = (1.-axs/h)/2
fig.subplots_adjust(bottom=l, top=1-l)
def adprodpow(areas, delays, pow):
''' for each value in [areas] returns area*delay^pow
helper function for freqPlot'''
result = []
for i in range(len(areas)):
result += [(areas[i])*(delays[i])**pow]
return result
def plotPPA(mod, freq=None, norm=True, aleOpt=False):
''' for the module specified, plots width vs delay, area, leakage power, and dynamic energy with fits
if no freq specified, uses the synthesis with best achievable delay for each width
overlays data from both techs
'''
plt.rcParams["figure.figsize"] = (10,7)
fig, axs = plt.subplots(2, 2)
# fig, axs = plt.subplots(4, 1)
# oneMetricPlot(mod, 'delay', ax=axs[0], fits=modFit[0], freq=freq, norm=norm)
# oneMetricPlot(mod, 'area', ax=axs[1], fits=modFit[1], freq=freq, norm=norm)
# oneMetricPlot(mod, 'lpower', ax=axs[2], fits=modFit[1], freq=freq, norm=norm)
# oneMetricPlot(mod, 'denergy', ax=axs[3], fits=modFit[1], freq=freq, norm=norm)
oneMetricPlot(mod, 'delay', ax=axs[0,0], freq=freq, norm=norm)
oneMetricPlot(mod, 'area', ax=axs[0,1], freq=freq, norm=norm)
oneMetricPlot(mod, 'lpower', ax=axs[1,0], freq=freq, norm=norm)
fullLeg = oneMetricPlot(mod, 'denergy', ax=axs[1,1], freq=freq, norm=norm)
if aleOpt:
oneMetricPlot(mod, 'area', ax=axs[0,1], freq=10, norm=norm, color='black')
oneMetricPlot(mod, 'lpower', ax=axs[1,0], freq=10, norm=norm, color='black')
oneMetricPlot(mod, 'denergy', ax=axs[1,1], freq=10, norm=norm, color='black')
titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best achievable delay)"
n = 'normalized' if norm else 'unnormalized'
saveStr = './plots/PPA/'+ n + '/' + mod + '.png'
plt.suptitle(mod + titleStr)
# fig.legend(handles=fullLeg, ncol=3, loc='center', bbox_to_anchor=(0.3, 0.82, 0.4, 0.2))
if freq != 10: plt.savefig(saveStr)
# plt.show()
def plotBestAreas(mod):
fig, axs = plt.subplots(1, 1)
### all areas on one
# mods = ['priorityencoder', 'add', 'csa', 'shiftleft', 'comparator', 'flop']
# colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']
# legend_elements = []
# for i in range(len(mods)):
# oneMetricPlot(mods[i], 'area', ax=axs, freq=10, norm=False, color=colors[i])
# legend_elements += [lines.Line2D([0], [0], color=colors[i], ls='', marker='o', label=mods[i])]
# plt.suptitle('Optimized Areas (target freq 10MHz)')
# plt.legend(handles=legend_elements)
# plt.savefig('./plots/bestareas.png')
# plt.show()
oneMetricPlot(mod, 'area', freq=10)
plt.title(mod + ' Optimized Areas (target freq 10MHz)')
plt.savefig('./plots/bestAreas/' + mod + '.png')
if __name__ == '__main__':
##############################
# set up stuff, global variables
widths = [8, 16, 32, 64, 128]
modules = ['priorityencoder', 'add', 'csa', 'shiftleft', 'comparator', 'flop', 'mux2', 'mux4', 'mux8', 'mult']
normAddWidth = 32 # divisor to use with N since normalizing to add_32
fitDict = {'add': ['cg', 'l', 'l'], 'mult': ['cg', 's', 'ls'], 'comparator': ['cg', 'l', 'l'], 'csa': ['c', 'l', 'l'], 'shiftleft': ['cg', 'l', 'ln'], 'flop': ['c', 'l', 'l'], 'priorityencoder': ['cg', 'l', 'l']}
fitDict.update(dict.fromkeys(['mux2', 'mux4', 'mux8'], ['cg', 'l', 'l']))
leftblue = [['mux2', 'sky90', 32], ['mux2', 'sky90', 64], ['mux2', 'sky90', 128], ['mux8', 'sky90', 32], ['mux2', 'tsmc28', 8], ['mux2', 'tsmc28', 64]]
TechSpec = namedtuple("TechSpec", "tech color shape delay area lpower denergy")
techSpecs = [['sky90', 'green', 'o', 43.2e-3, 1330.84, 582.81, 520.66], ['tsmc28', 'blue', '^', 12.2e-3, 209.29, 1060, 81.43]]
techSpecs = [TechSpec(*t) for t in techSpecs]
# invz1arealeakage = [['sky90', 1.96, 1.98], ['gf32', .351, .3116], ['tsmc28', .252, 1.09]] #['gf32', 'purple', 's', 15e-3]
##############################
# cleanup() # run to remove garbage synth runs
# synthsintocsv() # slow, run only when new synth runs to add to csv
allSynths = synthsfromcsv('ppaData.csv') # your csv here!
bestSynths = csvOfBest()
# ### plotting examples
# squareAreaDelay('sky90', 'add', 32)
# oneMetricPlot('add', 'delay')
# freqPlot('sky90', 'mux4', 16)
# makeCoefTable()
for mod in ['mux2']: #modules:
plotPPA(mod, norm=False)
plotPPA(mod) #, aleOpt=True)
# plotBestAreas(mod)
# for w in [8, 16, 32, 64, 128]:
# freqPlot('sky90', mod, w)
# freqPlot('tsmc28', mod, w)
plt.close('all')