cvw/testbench/common/wallyTracer.sv
2025-01-29 19:18:32 -08:00

464 lines
23 KiB
Systemverilog

///////////////////////////////////////////
// wallyTracer.sv
//
// A component of the Wally configurable RISC-V project.
// Implements a RISC-V Verification Interface (RVVI)
// to support functional coverage and lockstep simulation.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
`define STD_LOG 0
`define PRINT_PC_INSTR 0
`define PRINT_MOST 0
`define PRINT_ALL 0
`define PRINT_CSRS 0
// Since we are detecting the CSR change by comparing the old value, we need to
// ensure the CSR is detected when the pipeline's Writeback stage is not
// stalled. If it is stalled we want to hold the old value.
`define CONNECT_CSR(name, addr, val) \
logic [P.XLEN-1:0] prev_csr_``name; \
always_ff @(posedge clk) \
prev_csr_``name <= rvvi.csr[0][0][addr]; \
assign rvvi.csr_wb[0][0][addr] = (rvvi.csr[0][0][addr] != prev_csr_``name); \
assign rvvi.csr[0][0][addr] = valid ? val : prev_csr_``name;
module wallyTracer import cvw::*; #(parameter cvw_t P) (rvviTrace rvvi);
localparam NUM_REGS = P.E_SUPPORTED ? 16 : 32;
localparam NUM_CSRS = 4096;
// wally specific signals
logic reset;
logic clk;
logic InstrValidD, InstrValidE;
logic StallF, StallD;
logic STATUS_SXL, STATUS_UXL;
logic [P.XLEN-1:0] PCNextF, PCF, PCD, PCE, PCM, PCW;
logic [31:0] InstrRawD, InstrRawE, InstrRawM, InstrRawW;
logic InstrValidM, InstrValidW;
logic StallE, StallM, StallW;
logic GatedStallW;
logic SelHPTW;
logic FlushD, FlushE, FlushM, FlushW;
logic TrapM, TrapW;
logic HaltM, HaltW;
logic [1:0] PrivilegeModeW;
logic [P.XLEN-1:0] rf[NUM_REGS];
logic [NUM_REGS-1:0] rf_wb;
logic [4:0] rf_a3;
logic rf_we3;
logic [P.FLEN-1:0] frf[32];
logic [31:0] frf_wb;
logic [4:0] frf_a4;
logic frf_we4;
logic [P.XLEN-1:0] CSRArray [4095:0];
logic [P.XLEN-1:0] CSRArrayOld [4095:0];
logic [NUM_CSRS-1:0] CSR_W;
logic CSRWriteM, CSRWriteW;
logic [11:0] CSRAdrM, CSRAdrW;
logic wfiM;
logic InterruptM, InterruptW;
logic valid;
//For VM Verification
logic [(P.XLEN-1):0] IVAdrF,IVAdrD,IVAdrE,IVAdrM,IVAdrW,DVAdrM,DVAdrW;
logic [(P.XLEN-1):0] IPTEF,IPTED,IPTEE,IPTEM,IPTEW,DPTEM,DPTEW;
logic [(P.PA_BITS-1):0] IPAF,IPAD,IPAE,IPAM,IPAW,DPAM,DPAW;
logic [(P.PPN_BITS-1):0] IPPNF,IPPND,IPPNE,IPPNM,IPPNW,DPPNM,DPPNW;
logic [1:0] IPageTypeF, IPageTypeD, IPageTypeE, IPageTypeM, IPageTypeW, DPageTypeM, DPageTypeW;
logic ReadAccessM,WriteAccessM,ReadAccessW,WriteAccessW;
logic ExecuteAccessF,ExecuteAccessD,ExecuteAccessE,ExecuteAccessM,ExecuteAccessW;
assign clk = testbench.dut.clk;
// assign InstrValidF = testbench.dut.core.ieu.InstrValidF; // not needed yet
assign InstrValidD = testbench.dut.core.ieu.c.InstrValidD;
assign InstrValidE = testbench.dut.core.ieu.c.InstrValidE;
assign InstrValidM = testbench.dut.core.ieu.InstrValidM;
assign InstrRawD = testbench.dut.core.ifu.InstrRawD;
assign PCNextF = testbench.dut.core.ifu.PCNextF;
assign PCF = testbench.dut.core.ifu.PCF;
assign PCD = testbench.dut.core.ifu.PCD;
assign PCE = testbench.dut.core.ifu.PCE;
assign PCM = testbench.dut.core.ifu.PCM;
assign reset = testbench.reset;
assign StallF = testbench.dut.core.StallF;
assign StallD = testbench.dut.core.StallD;
assign StallE = testbench.dut.core.StallE;
assign StallM = testbench.dut.core.StallM;
assign StallW = testbench.dut.core.StallW;
assign GatedStallW = testbench.dut.core.lsu.GatedStallW;
assign SelHPTW = testbench.dut.core.lsu.hptw.hptw.SelHPTW;
assign FlushD = testbench.dut.core.FlushD;
assign FlushE = testbench.dut.core.FlushE;
assign FlushM = testbench.dut.core.FlushM;
assign FlushW = testbench.dut.core.FlushW;
assign TrapM = testbench.dut.core.TrapM;
assign HaltM = testbench.DCacheFlushStart;
if (P.ZICSR_SUPPORTED) begin
assign PrivilegeModeW = testbench.dut.core.priv.priv.privmode.PrivilegeModeW;
assign STATUS_SXL = testbench.dut.core.priv.priv.csr.csrsr.STATUS_SXL;
assign STATUS_UXL = testbench.dut.core.priv.priv.csr.csrsr.STATUS_UXL;
assign wfiM = testbench.dut.core.priv.priv.wfiM;
assign InterruptM = testbench.dut.core.priv.priv.InterruptM;
end else begin
assign PrivilegeModeW = 2'b11;
assign STATUS_SXL = 0;
assign STATUS_UXL = 0;
assign wfiM = 0;
assign InterruptM = 0;
end
//For VM Verification
assign IVAdrF = testbench.dut.core.ifu.immu.immu.tlb.tlb.VAdr;
assign DVAdrM = testbench.dut.core.lsu.dmmu.dmmu.tlb.tlb.VAdr;
assign IPAF = testbench.dut.core.ifu.immu.immu.PhysicalAddress;
assign DPAM = testbench.dut.core.lsu.dmmu.dmmu.PhysicalAddress;
assign ReadAccessM = testbench.dut.core.lsu.dmmu.dmmu.ReadAccessM;
assign WriteAccessM = testbench.dut.core.lsu.dmmu.dmmu.WriteAccessM;
assign ExecuteAccessF = testbench.dut.core.ifu.immu.immu.ExecuteAccessF;
assign IPTEF = testbench.dut.core.ifu.immu.immu.PTE;
assign DPTEM = testbench.dut.core.lsu.dmmu.dmmu.PTE;
assign IPPNF = testbench.dut.core.ifu.immu.immu.tlb.tlb.PPN;
assign DPPNM = testbench.dut.core.lsu.dmmu.dmmu.tlb.tlb.PPN;
assign IPageTypeF = testbench.dut.core.ifu.immu.immu.PageTypeWriteVal;
assign DPageTypeM = testbench.dut.core.lsu.dmmu.dmmu.PageTypeWriteVal;
// CSR connections
if (P.ZICSR_SUPPORTED) begin
// M-mode trap CSRs
`CONNECT_CSR(MSTATUS, 12'h300, testbench.dut.core.priv.priv.csr.csrm.MSTATUS_REGW);
`CONNECT_CSR(MEDELEG, 12'h302, testbench.dut.core.priv.priv.csr.csrm.MEDELEG_REGW);
`CONNECT_CSR(MIDELEG, 12'h303, testbench.dut.core.priv.priv.csr.csrm.MIDELEG_REGW);
`CONNECT_CSR(MIE, 12'h304, testbench.dut.core.priv.priv.csr.csrm.MIE_REGW);
`CONNECT_CSR(MTVEC, 12'h305, testbench.dut.core.priv.priv.csr.csrm.MTVEC_REGW);
`CONNECT_CSR(MSCRATCH, 12'h340, testbench.dut.core.priv.priv.csr.csrm.MSCRATCH_REGW);
`CONNECT_CSR(MEPC, 12'h341, testbench.dut.core.priv.priv.csr.csrm.MEPC_REGW);
`CONNECT_CSR(MCAUSE, 12'h342, testbench.dut.core.priv.priv.csr.csrm.MCAUSE_REGW);
`CONNECT_CSR(MTVAL, 12'h343, testbench.dut.core.priv.priv.csr.csrm.MTVAL_REGW);
`CONNECT_CSR(MIP, 12'h344, testbench.dut.core.priv.priv.csr.csrm.MIP_REGW);
// S-mode trap CSRs
`CONNECT_CSR(SSTATUS, 12'h100, testbench.dut.core.priv.priv.csr.csrs.csrs.SSTATUS_REGW);
`CONNECT_CSR(SIE, 12'h104, testbench.dut.core.priv.priv.csr.csrm.MIE_REGW & 12'h222);
`CONNECT_CSR(STVEC, 12'h105, testbench.dut.core.priv.priv.csr.csrs.csrs.STVEC_REGW);
`CONNECT_CSR(SSCRATCH, 12'h140, testbench.dut.core.priv.priv.csr.csrs.csrs.SSCRATCH_REGW);
`CONNECT_CSR(SEPC, 12'h141, testbench.dut.core.priv.priv.csr.csrs.csrs.SEPC_REGW);
`CONNECT_CSR(SCAUSE, 12'h142, testbench.dut.core.priv.priv.csr.csrs.csrs.SCAUSE_REGW);
`CONNECT_CSR(STVAL, 12'h143, testbench.dut.core.priv.priv.csr.csrs.csrs.STVAL_REGW);
`CONNECT_CSR(SIP, 12'h144, testbench.dut.core.priv.priv.csr.csrm.MIP_REGW & 12'h222 & testbench.dut.core.priv.priv.csr.csrm.MIDELEG_REGW);
// Virtual Memory CSRs
`CONNECT_CSR(SATP, 12'h180, testbench.dut.core.priv.priv.csr.csrs.csrs.SATP_REGW);
// Floating-Point CSRs
`CONNECT_CSR(FFLAGS, 12'h001, testbench.dut.core.priv.priv.csr.csru.csru.FFLAGS_REGW);
`CONNECT_CSR(FRM, 12'h002, testbench.dut.core.priv.priv.csr.csru.csru.FRM_REGW);
`CONNECT_CSR(FCSR, 12'h003, {testbench.dut.core.priv.priv.csr.csru.csru.FRM_REGW, testbench.dut.core.priv.priv.csr.csru.csru.FFLAGS_REGW});
// Counters / Performance Monitoring CSRs
`CONNECT_CSR(MCOUNTEREN, 12'h306, testbench.dut.core.priv.priv.csr.csrm.MCOUNTEREN_REGW);
`CONNECT_CSR(SCOUNTEREN, 12'h106, testbench.dut.core.priv.priv.csr.csrs.csrs.SCOUNTEREN_REGW);
`CONNECT_CSR(MCOUNTINHIBIT, 12'h320, testbench.dut.core.priv.priv.csr.csrm.MCOUNTINHIBIT_REGW);
// mhpmevent3-31 not connected (232-33F)
`CONNECT_CSR(MCYCLE, 12'hB00, testbench.dut.core.priv.priv.csr.counters.counters.HPMCOUNTER_REGW[0]); // MCYCLE
`CONNECT_CSR(MINSTRET, 12'hB02, testbench.dut.core.priv.priv.csr.counters.counters.HPMCOUNTER_REGW[2]); // MINSTRET
// mhpmcounter3-31 not connected (B03-B1F)
// cycle, time, instret not connected (C00-C02)
// hpmcounter3-31 not connected (C03-C1F)
// Machine Information Registers and Configuration CSRs
`CONNECT_CSR(MISA, 12'h301, testbench.dut.core.priv.priv.csr.csrm.MISA_REGW);
`CONNECT_CSR(MENVCFG, 12'h30A, testbench.dut.core.priv.priv.csr.csrm.MENVCFG_REGW);
`CONNECT_CSR(SENVCFG, 12'h10A, testbench.dut.core.priv.priv.csr.csrs.csrs.SENVCFG_REGW);
`CONNECT_CSR(MSECCFG, 12'h747, 0); // mseccfg
`CONNECT_CSR(MVENDORID, 12'hF11, 0); //mvendorid
`CONNECT_CSR(MARCHID, 12'hF12, 0); // marchid
`CONNECT_CSR(MIMPID, 12'hF13, {{P.XLEN-12{1'b0}}, 12'h100}); // mimpid
`CONNECT_CSR(MHARTID, 12'hF14, testbench.dut.core.priv.priv.csr.csrm.MHARTID_REGW);
`CONNECT_CSR(MCONFIGPTR, 12'hF15, 0); //mconfigptr
// Sstc CSRs
`CONNECT_CSR(STIMECMP, 12'h14D, testbench.dut.core.priv.priv.csr.csrs.csrs.STIMECMP_REGW[P.XLEN-1:0]);
// Zkr CSRs
// seed not connected (015)
// extra CSRs for RV32
if (P.XLEN == 32) begin
`CONNECT_CSR(MSTATUSH, 12'h310, testbench.dut.core.priv.priv.csr.csrsr.MSTATUSH_REGW);
`CONNECT_CSR(MENVCFGH, 12'h31A, testbench.dut.core.priv.priv.csr.csrm.MENVCFGH_REGW);
`CONNECT_CSR(MSECCFGH, 12'h757, 0); // mseccfgh
`CONNECT_CSR(STIMECMPH, 12'h15D, testbench.dut.core.priv.priv.csr.csrs.csrs.STIMECMP_REGW[63:32]);
end
end
// PMP CSRs
if (P.PMP_ENTRIES > 0) begin
always_comb begin
if(valid) begin
// PMPCFG CSRs (space is 0-15 3a0 - 3af)
localparam inc = P.XLEN == 32 ? 4 : 8;
int i, i4, csrid;
logic [P.XLEN-1:0] pmp;
for (i=0; i<P.PMP_ENTRIES; i+=inc) begin
i4 = i / 4;
csrid = 12'h3A0 + i4;
pmp = 0;
pmp |= testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[i+0] << 0;
pmp |= testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[i+1] << 8;
pmp |= testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[i+2] << 16;
pmp |= testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[i+3] << 24;
pmp |= testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[i+4] << 32;
pmp |= testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[i+5] << 40;
pmp |= testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[i+6] << 48;
pmp |= testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[i+7] << 56;
CSRArray[csrid] = pmp;
end
// PMPADDR CSRs (space is 0-63 3b0 - 3ef)
for (i=0; i<P.PMP_ENTRIES; i++) begin
csrid = 12'h3B0 + i;;
pmp = testbench.dut.core.priv.priv.csr.csrm.PMPADDR_ARRAY_REGW[i];
CSRArray[csrid] = pmp;
end
end else begin // hold the old value if the pipeline is stalled.
// PMP CFG 3A0 to 3AF
int csrid;
for(csrid='h3A0; csrid<='h3AF; csrid++)
CSRArray[csrid] = CSRArrayOld[csrid];
// PMP ADDR 3B0 to 3EF
for(csrid='h3B0; csrid<='h3EF; csrid++)
CSRArray[csrid] = CSRArrayOld[csrid];
end
end
end
// record previous csr value.
always_ff @(posedge clk) begin
int csrid;
// PMP CFG 3A0 to 3AF
for(csrid='h3A0; csrid<='h3AF; csrid++)
CSRArrayOld[csrid] = CSRArray[csrid];
// PMP ADDR 3B0 to 3EF
for(csrid='h3B0; csrid<='h3EF; csrid++)
CSRArrayOld[csrid] = CSRArray[csrid];
end
// PMP CFG 3A0 to 3AF
genvar index;
for(index='h3A0; index<='h3AF; index++) begin
assign CSR_W[index] = (CSRArrayOld[index] != CSRArray[index]) ? 1 : 0;
assign rvvi.csr_wb[0][0][index] = CSR_W[index];
assign rvvi.csr[0][0][index] = CSRArray[index];
end
// PMP ADDR 3B0 to 3EF
for(index='h3B0; index<='h3EF; index++) begin
assign CSR_W[index] = (CSRArrayOld[index] != CSRArray[index]) ? 1 : 0;
assign rvvi.csr_wb[0][0][index] = CSR_W[index];
assign rvvi.csr[0][0][index] = CSRArray[index];
end
// Integer register file
assign rf[0] = 0;
for(index = 1; index < NUM_REGS; index += 1)
assign rf[index] = testbench.dut.core.ieu.dp.regf.rf[index];
assign rf_a3 = testbench.dut.core.ieu.dp.regf.a3;
assign rf_we3 = testbench.dut.core.ieu.dp.regf.we3;
always_comb begin
rf_wb <= 0;
if(rf_we3)
rf_wb[rf_a3] <= 1'b1;
end
// Floating-point register file
if (P.F_SUPPORTED) begin
assign frf_a4 = testbench.dut.core.fpu.fpu.fregfile.a4;
assign frf_we4 = testbench.dut.core.fpu.fpu.fregfile.we4;
for(index = 0; index < 32; index += 1)
assign frf[index] = testbench.dut.core.fpu.fpu.fregfile.rf[index];
end else begin
assign frf_a4 = '0;
assign frf_we4 = 0;
for(index = 0; index < 32; index += 1)
assign frf[index] = '0;
end
always_comb begin
frf_wb <= 0;
if(frf_we4)
frf_wb[frf_a4] <= 1'b1;
end
// CSR writes
assign CSRAdrM = testbench.dut.core.priv.priv.csr.CSRAdrM;
assign CSRWriteM = testbench.dut.core.priv.priv.csr.CSRWriteM;
// pipeline to writeback stage
flopenrc #(32) InstrRawEReg (clk, reset, FlushE, ~StallE, InstrRawD, InstrRawE);
flopenrc #(32) InstrRawMReg (clk, reset, FlushM, ~StallM, InstrRawE, InstrRawM);
flopenrc #(32) InstrRawWReg (clk, reset, FlushW & ~TrapM, ~StallW, InstrRawM, InstrRawW);
flopenrc #(P.XLEN)PCWReg (clk, reset, FlushW & ~TrapM, ~StallW, PCM, PCW);
flopenrc #(1) InstrValidMReg (clk, reset, FlushW & ~TrapM, ~StallW, InstrValidM, InstrValidW);
flopenrc #(1) TrapWReg (clk, reset, 1'b0, ~StallW, TrapM, TrapW);
flopenrc #(1) InterruptWReg (clk, reset, 1'b0, ~StallW, InterruptM, InterruptW);
flopenrc #(1) HaltWReg (clk, reset, 1'b0, ~StallW, HaltM, HaltW);
flopenrc #(12) CSRAdrWReg (clk, reset, FlushW, ~StallW, CSRAdrM, CSRAdrW);
flopenrc #(1) CSRWriteWReg (clk, reset, FlushW, ~StallW, CSRWriteM, CSRWriteW);
//for VM Verification
flopenrc #(P.XLEN) IVAdrDReg (clk, reset, 1'b0, SelHPTW, IVAdrF, IVAdrD); //Virtual Address for IMMU // *** RT: possible bug SelHPTW probably should be ~StallD
flopenrc #(P.XLEN) IVAdrEReg (clk, reset, 1'b0, ~StallE, IVAdrD, IVAdrE); //Virtual Address for IMMU
flopenrc #(P.XLEN) IVAdrMReg (clk, reset, 1'b0, ~StallM, IVAdrE, IVAdrM); //Virtual Address for IMMU
flopenrc #(P.XLEN) IVAdrWReg (clk, reset, 1'b0, SelHPTW, IVAdrM, IVAdrW); //Virtual Address for IMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW
flopenrc #(P.XLEN) DVAdrWReg (clk, reset, 1'b0, SelHPTW, DVAdrM, DVAdrW); //Virtual Address for DMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW
flopenrc #(P.PA_BITS) IPADReg (clk, reset, 1'b0, SelHPTW, IPAF, IPAD); //Physical Address for IMMU // *** RT: possible bug SelHPTW probably should be ~StallD
flopenrc #(P.PA_BITS) IPAEReg (clk, reset, 1'b0, ~StallE, IPAD, IPAE); //Physical Address for IMMU
flopenrc #(P.PA_BITS) IPAMReg (clk, reset, 1'b0, ~StallM, IPAE, IPAM); //Physical Address for IMMU
flopenrc #(P.PA_BITS) IPAWReg (clk, reset, 1'b0, SelHPTW, IPAM, IPAW); //Physical Address for IMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW
flopenrc #(P.PA_BITS) DPAWReg (clk, reset, 1'b0, SelHPTW, DPAM, DPAW); //Physical Address for DMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW
flopenrc #(P.XLEN) IPTEDReg (clk, reset, 1'b0, SelHPTW, IPTEF, IPTED); //PTE for IMMU // *** RT: possible bug SelHPTW probably should be ~StallD
flopenrc #(P.XLEN) IPTEEReg (clk, reset, 1'b0, ~StallE, IPTED, IPTEE); //PTE for IMMU
flopenrc #(P.XLEN) IPTEMReg (clk, reset, 1'b0, ~StallM, IPTEE, IPTEM); //PTE for IMMU
flopenrc #(P.XLEN) IPTEWReg (clk, reset, 1'b0, SelHPTW, IPTEM, IPTEW); //PTE for IMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW
flopenrc #(P.XLEN) DPTEWReg (clk, reset, 1'b0, SelHPTW, DPTEM, DPTEW); //PTE for DMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW
flopenrc #(2) IPageTypeDReg (clk, reset, 1'b0, SelHPTW, IPageTypeF, IPageTypeD); //PageType (kilo, mega, giga, tera) from IMMU // *** RT: possible bug SelHPTW probably should be ~StallD
flopenrc #(2) IPageTypeEReg (clk, reset, 1'b0, ~StallE, IPageTypeD, IPageTypeE); //PageType (kilo, mega, giga, tera) from IMMU
flopenrc #(2) IPageTypeMReg (clk, reset, 1'b0, ~StallM, IPageTypeE, IPageTypeM); //PageType (kilo, mega, giga, tera) from IMMU
flopenrc #(2) IPageTypeWReg (clk, reset, 1'b0, SelHPTW, IPageTypeM, IPageTypeW); //PageType (kilo, mega, giga, tera) from IMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW
flopenrc #(2) DPageTypeWReg (clk, reset, 1'b0, SelHPTW, DPageTypeM, DPageTypeW); //PageType (kilo, mega, giga, tera) from DMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW
flopenrc #(P.PPN_BITS) IPPNDReg (clk, reset, 1'b0, ~StallD, IPPNF, IPPND); //Physical Page Number for IMMU
flopenrc #(P.PPN_BITS) IPPNEReg (clk, reset, 1'b0, ~StallE, IPPND, IPPNE); //Physical Page Number for IMMU
flopenrc #(P.PPN_BITS) IPPNMReg (clk, reset, 1'b0, ~StallM, IPPNE, IPPNM); //Physical Page Number for IMMU
flopenrc #(P.PPN_BITS) IPPNWReg (clk, reset, 1'b0, ~StallW, IPPNM, IPPNW); //Physical Page Number for IMMU
flopenrc #(P.PPN_BITS) DPPNWReg (clk, reset, 1'b0, ~StallW, DPPNM, DPPNW); //Physical Page Number for DMMU
flopenrc #(1) ReadAccessWReg (clk, reset, 1'b0, ~GatedStallW, ReadAccessM, ReadAccessW); //LoadAccess
flopenrc #(1) WriteAccessWReg (clk, reset, 1'b0, ~GatedStallW, WriteAccessM, WriteAccessW); //StoreAccess
flopenrc #(1) ExecuteAccessDReg (clk, reset, 1'b0, ~StallD, ExecuteAccessF, ExecuteAccessD); //Instruction Fetch Access
flopenrc #(1) ExecuteAccessEReg (clk, reset, 1'b0, ~StallE, ExecuteAccessD, ExecuteAccessE); //Instruction Fetch Access
flopenrc #(1) ExecuteAccessMReg (clk, reset, 1'b0, ~StallM, ExecuteAccessE, ExecuteAccessM); //Instruction Fetch Access
flopenrc #(1) ExecuteAccessWReg (clk, reset, 1'b0, ~StallW, ExecuteAccessM, ExecuteAccessW); //Instruction Fetch Access
// Initially connecting the writeback stage signals, but may need to use M stage
// and gate on ~FlushW.
assign valid = ((InstrValidW | TrapW) & ~StallW) & ~reset;
assign rvvi.clk = clk;
assign rvvi.valid[0][0] = valid;
assign rvvi.order[0][0] = rvvi.csr[0][0][12'hB02]; // TODO: IMPERAS Should be event order
assign rvvi.insn[0][0] = InstrRawW;
assign rvvi.pc_rdata[0][0] = PCW;
assign rvvi.trap[0][0] = TrapW;
assign rvvi.halt[0][0] = HaltW;
assign rvvi.intr[0][0] = InterruptW;
assign rvvi.mode[0][0] = PrivilegeModeW;
assign rvvi.ixl[0][0] = PrivilegeModeW == 2'b11 ? 2'b10 :
PrivilegeModeW == 2'b01 ? STATUS_SXL : STATUS_UXL;
assign rvvi.pc_wdata[0][0] = ~FlushW ? PCM :
~FlushM ? PCE :
~FlushE ? PCD :
~FlushD ? PCF : PCNextF;
for(index = 0; index < NUM_REGS; index += 1) begin
assign rvvi.x_wdata[0][0][index] = rf[index];
assign rvvi.x_wb[0][0][index] = rf_wb[index];
end
for(index = 0; index < 32; index += 1) begin
assign rvvi.f_wdata[0][0][index] = frf[index];
assign rvvi.f_wb[0][0][index] = frf_wb[index];
end
// *** implementation only cancel? so sc does not clear?
assign rvvi.lrsc_cancel[0][0] = 0;
integer index2;
string instrWName;
int file;
string LogFile;
if(`STD_LOG) begin
instrNameDecTB #(P.XLEN) NameDecoder(rvvi.insn[0][0], instrWName);
initial begin
LogFile = "logs/boottrace.log";
file = $fopen(LogFile, "w");
end
end
always_ff @(posedge clk) begin
if(valid) begin
if(`STD_LOG) begin
$fwrite(file, "%016x, %08x, %s\t\t", rvvi.pc_rdata[0][0], rvvi.insn[0][0], instrWName);
for(index2 = 0; index2 < NUM_REGS; index2 += 1) begin
if(rvvi.x_wb[0][0][index2]) begin
$fwrite(file, "rf[%02d] = %016x ", index2, rvvi.x_wdata[0][0][index2]);
end
end
end
for(index2 = 0; index2 < 32; index2 += 1) begin
if(rvvi.f_wb[0][0][index2]) begin
$fwrite(file, "frf[%02d] = %016x ", index2, rvvi.f_wdata[0][0][index2]);
end
end
for(index2 = 0; index2 < NUM_CSRS; index2 += 1) begin
if(rvvi.csr_wb[0][0][index2]) begin
$fwrite(file, "csr[%03x] = %016x ", index2, rvvi.csr[0][0][index2]);
end
end
$fwrite(file, "\n");
if(`PRINT_PC_INSTR & !(`PRINT_ALL | `PRINT_MOST))
$display("order = %08d, PC = %08x, insn = %08x", rvvi.order[0][0], rvvi.pc_rdata[0][0], rvvi.insn[0][0]);
else if(`PRINT_MOST & !`PRINT_ALL)
$display("order = %08d, PC = %010x, insn = %08x, trap = %1d, halt = %1d, intr = %1d, mode = %1x, ixl = %1x, pc_wdata = %010x, x%02d = %016x, f%02d = %016x, csr%03x = %016x",
rvvi.order[0][0], rvvi.pc_rdata[0][0], rvvi.insn[0][0], rvvi.trap[0][0], rvvi.halt[0][0], rvvi.intr[0][0], rvvi.mode[0][0], rvvi.ixl[0][0], rvvi.pc_wdata[0][0], rf_a3, rvvi.x_wdata[0][0][rf_a3], frf_a4, rvvi.f_wdata[0][0][frf_a4], CSRAdrW, rvvi.csr[0][0][CSRAdrW]);
else if(`PRINT_ALL) begin
$display("order = %08d, PC = %08x, insn = %08x, trap = %1d, halt = %1d, intr = %1d, mode = %1x, ixl = %1x, pc_wdata = %08x",
rvvi.order[0][0], rvvi.pc_rdata[0][0], rvvi.insn[0][0], rvvi.trap[0][0], rvvi.halt[0][0], rvvi.intr[0][0], rvvi.mode[0][0], rvvi.ixl[0][0], rvvi.pc_wdata[0][0]);
for(index2 = 0; index2 < NUM_REGS; index2 += 1) begin
$display("x%02d = %08x", index2, rvvi.x_wdata[0][0][index2]);
end
for(index2 = 0; index2 < 32; index2 += 1) begin
$display("f%02d = %08x", index2, rvvi.f_wdata[0][0][index2]);
end
end
if (`PRINT_CSRS) begin
for(index2 = 0; index2 < NUM_CSRS; index2 += 1) begin
if((rvvi.csr[0][0][index2] != CSRArrayOld[index2])) begin
$display("%t: CSR %03x = %x", $time(), index2, rvvi.csr[0][0][index2]);
end
end
end
end
if(HaltW) $finish;
end
endmodule