mirror of
https://github.com/openhwgroup/cvw
synced 2025-01-30 16:34:28 +00:00
857 lines
16 KiB
C
857 lines
16 KiB
C
|
|
/*============================================================================
|
|
|
|
This C source file is part of TestFloat, Release 3e, a package of programs for
|
|
testing the correctness of floating-point arithmetic complying with the IEEE
|
|
Standard for Floating-Point, by John R. Hauser.
|
|
|
|
Copyright 2011, 2012, 2013, 2014, 2017 The Regents of the University of
|
|
California. All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions, and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions, and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the University nor the names of its contributors may
|
|
be used to endorse or promote products derived from this software without
|
|
specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
|
|
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
|
|
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
=============================================================================*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <fenv.h>
|
|
#include <math.h>
|
|
#include "platform.h"
|
|
#include "softfloat.h"
|
|
#include "subjfloat_config.h"
|
|
#include "subjfloat.h"
|
|
|
|
#pragma STDC FENV_ACCESS ON
|
|
|
|
void subjfloat_setRoundingMode( uint_fast8_t roundingMode )
|
|
{
|
|
|
|
fesetround(
|
|
(roundingMode == softfloat_round_near_even) ? FE_TONEAREST
|
|
: (roundingMode == softfloat_round_minMag) ? FE_TOWARDZERO
|
|
: (roundingMode == softfloat_round_min) ? FE_DOWNWARD
|
|
: FE_UPWARD
|
|
);
|
|
|
|
}
|
|
|
|
void subjfloat_setExtF80RoundingPrecision( uint_fast8_t roundingPrecision )
|
|
{
|
|
|
|
}
|
|
|
|
uint_fast8_t subjfloat_clearExceptionFlags( void )
|
|
{
|
|
int subjExceptionFlags;
|
|
uint_fast8_t exceptionFlags;
|
|
|
|
subjExceptionFlags =
|
|
fetestexcept(
|
|
FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW | FE_INEXACT
|
|
);
|
|
feclearexcept(
|
|
FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW | FE_INEXACT );
|
|
exceptionFlags = 0;
|
|
if ( subjExceptionFlags & FE_INVALID ) {
|
|
exceptionFlags |= softfloat_flag_invalid;
|
|
}
|
|
if ( subjExceptionFlags & FE_DIVBYZERO ) {
|
|
exceptionFlags |= softfloat_flag_infinite;
|
|
}
|
|
if ( subjExceptionFlags & FE_OVERFLOW ) {
|
|
exceptionFlags |= softfloat_flag_overflow;
|
|
}
|
|
if ( subjExceptionFlags & FE_UNDERFLOW ) {
|
|
exceptionFlags |= softfloat_flag_underflow;
|
|
}
|
|
if ( subjExceptionFlags & FE_INEXACT ) {
|
|
exceptionFlags |= softfloat_flag_inexact;
|
|
}
|
|
return exceptionFlags;
|
|
|
|
}
|
|
|
|
union f32_f { float32_t f32; float f; };
|
|
|
|
float32_t subj_ui32_to_f32( uint32_t a )
|
|
{
|
|
union f32_f uZ;
|
|
|
|
uZ.f = a;
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
float32_t subj_ui64_to_f32( uint64_t a )
|
|
{
|
|
union f32_f uZ;
|
|
|
|
uZ.f = a;
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
float32_t subj_i32_to_f32( int32_t a )
|
|
{
|
|
union f32_f uZ;
|
|
|
|
uZ.f = a;
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
float32_t subj_i64_to_f32( int64_t a )
|
|
{
|
|
union f32_f uZ;
|
|
|
|
uZ.f = a;
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
uint_fast32_t subj_f32_to_ui32_rx_minMag( float32_t a )
|
|
{
|
|
union f32_f uA;
|
|
|
|
uA.f32 = a;
|
|
return (uint32_t) uA.f;
|
|
|
|
}
|
|
|
|
uint_fast64_t subj_f32_to_ui64_rx_minMag( float32_t a )
|
|
{
|
|
union f32_f uA;
|
|
|
|
uA.f32 = a;
|
|
return (uint64_t) uA.f;
|
|
|
|
}
|
|
|
|
int_fast32_t subj_f32_to_i32_rx_minMag( float32_t a )
|
|
{
|
|
union f32_f uA;
|
|
|
|
uA.f32 = a;
|
|
return (int32_t) uA.f;
|
|
|
|
}
|
|
|
|
int_fast64_t subj_f32_to_i64_rx_minMag( float32_t a )
|
|
{
|
|
union f32_f uA;
|
|
|
|
uA.f32 = a;
|
|
return (int64_t) uA.f;
|
|
|
|
}
|
|
|
|
float32_t subj_f32_add( float32_t a, float32_t b )
|
|
{
|
|
union f32_f uA, uB, uZ;
|
|
|
|
uA.f32 = a;
|
|
uB.f32 = b;
|
|
uZ.f = uA.f + uB.f;
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
float32_t subj_f32_sub( float32_t a, float32_t b )
|
|
{
|
|
union f32_f uA, uB, uZ;
|
|
|
|
uA.f32 = a;
|
|
uB.f32 = b;
|
|
uZ.f = uA.f - uB.f;
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
float32_t subj_f32_mul( float32_t a, float32_t b )
|
|
{
|
|
union f32_f uA, uB, uZ;
|
|
|
|
uA.f32 = a;
|
|
uB.f32 = b;
|
|
uZ.f = uA.f * uB.f;
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
#ifdef __STDC_VERSION__
|
|
#if 199901L <= __STDC_VERSION__
|
|
|
|
float32_t subj_f32_mulAdd( float32_t a, float32_t b, float32_t c )
|
|
{
|
|
union f32_f uA, uB, uC, uZ;
|
|
|
|
uA.f32 = a;
|
|
uB.f32 = b;
|
|
uC.f32 = c;
|
|
uZ.f = fmaf( uA.f, uB.f, uC.f );
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
float32_t subj_f32_div( float32_t a, float32_t b )
|
|
{
|
|
union f32_f uA, uB, uZ;
|
|
|
|
uA.f32 = a;
|
|
uB.f32 = b;
|
|
uZ.f = uA.f / uB.f;
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
#ifdef __STDC_VERSION__
|
|
#if 199901L <= __STDC_VERSION__
|
|
|
|
float32_t subj_f32_sqrt( float32_t a )
|
|
{
|
|
union f32_f uA, uZ;
|
|
|
|
uA.f32 = a;
|
|
uZ.f = sqrtf( uA.f );
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
bool subj_f32_eq( float32_t a, float32_t b )
|
|
{
|
|
union f32_f uA, uB;
|
|
|
|
uA.f32 = a;
|
|
uB.f32 = b;
|
|
return (uA.f == uB.f);
|
|
|
|
}
|
|
|
|
bool subj_f32_le( float32_t a, float32_t b )
|
|
{
|
|
union f32_f uA, uB;
|
|
|
|
uA.f32 = a;
|
|
uB.f32 = b;
|
|
return (uA.f <= uB.f);
|
|
|
|
}
|
|
|
|
bool subj_f32_lt( float32_t a, float32_t b )
|
|
{
|
|
union f32_f uA, uB;
|
|
|
|
uA.f32 = a;
|
|
uB.f32 = b;
|
|
return (uA.f < uB.f);
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
#ifdef FLOAT64
|
|
|
|
union f64_d { float64_t f64; double d; };
|
|
|
|
float64_t subj_ui32_to_f64( uint32_t a )
|
|
{
|
|
union f64_d uZ;
|
|
|
|
uZ.d = a;
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
float64_t subj_ui64_to_f64( uint64_t a )
|
|
{
|
|
union f64_d uZ;
|
|
|
|
uZ.d = a;
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
float64_t subj_i32_to_f64( int32_t a )
|
|
{
|
|
union f64_d uZ;
|
|
|
|
uZ.d = a;
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
float64_t subj_i64_to_f64( int64_t a )
|
|
{
|
|
union f64_d uZ;
|
|
|
|
uZ.d = a;
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
float64_t subj_f32_to_f64( float32_t a )
|
|
{
|
|
union f32_f uA;
|
|
union f64_d uZ;
|
|
|
|
uA.f32 = a;
|
|
uZ.d = uA.f;
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
uint_fast32_t subj_f64_to_ui32_rx_minMag( float64_t a )
|
|
{
|
|
union f64_d uA;
|
|
|
|
uA.f64 = a;
|
|
return (uint32_t) uA.d;
|
|
|
|
}
|
|
|
|
uint_fast64_t subj_f64_to_ui64_rx_minMag( float64_t a )
|
|
{
|
|
union f64_d uA;
|
|
|
|
uA.f64 = a;
|
|
return (uint64_t) uA.d;
|
|
|
|
}
|
|
|
|
int_fast32_t subj_f64_to_i32_rx_minMag( float64_t a )
|
|
{
|
|
union f64_d uA;
|
|
|
|
uA.f64 = a;
|
|
return (int32_t) uA.d;
|
|
|
|
}
|
|
|
|
int_fast64_t subj_f64_to_i64_rx_minMag( float64_t a )
|
|
{
|
|
union f64_d uA;
|
|
|
|
uA.f64 = a;
|
|
return (int64_t) uA.d;
|
|
|
|
}
|
|
|
|
float32_t subj_f64_to_f32( float64_t a )
|
|
{
|
|
union f64_d uA;
|
|
union f32_f uZ;
|
|
|
|
uA.f64 = a;
|
|
uZ.f = uA.d;
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
float64_t subj_f64_add( float64_t a, float64_t b )
|
|
{
|
|
union f64_d uA, uB, uZ;
|
|
|
|
uA.f64 = a;
|
|
uB.f64 = b;
|
|
uZ.d = uA.d + uB.d;
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
float64_t subj_f64_sub( float64_t a, float64_t b )
|
|
{
|
|
union f64_d uA, uB, uZ;
|
|
|
|
uA.f64 = a;
|
|
uB.f64 = b;
|
|
uZ.d = uA.d - uB.d;
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
float64_t subj_f64_mul( float64_t a, float64_t b )
|
|
{
|
|
union f64_d uA, uB, uZ;
|
|
|
|
uA.f64 = a;
|
|
uB.f64 = b;
|
|
uZ.d = uA.d * uB.d;
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
#ifdef __STDC_VERSION__
|
|
#if 199901L <= __STDC_VERSION__
|
|
|
|
float64_t subj_f64_mulAdd( float64_t a, float64_t b, float64_t c )
|
|
{
|
|
union f64_d uA, uB, uC, uZ;
|
|
|
|
uA.f64 = a;
|
|
uB.f64 = b;
|
|
uC.f64 = c;
|
|
uZ.d = fma( uA.d, uB.d, uC.d );
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
float64_t subj_f64_div( float64_t a, float64_t b )
|
|
{
|
|
union f64_d uA, uB, uZ;
|
|
|
|
uA.f64 = a;
|
|
uB.f64 = b;
|
|
uZ.d = uA.d / uB.d;
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
float64_t subj_f64_sqrt( float64_t a )
|
|
{
|
|
union f64_d uA, uZ;
|
|
|
|
uA.f64 = a;
|
|
uZ.d = sqrt( uA.d );
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
bool subj_f64_eq( float64_t a, float64_t b )
|
|
{
|
|
union f64_d uA, uB;
|
|
|
|
uA.f64 = a;
|
|
uB.f64 = b;
|
|
return (uA.d == uB.d);
|
|
|
|
}
|
|
|
|
bool subj_f64_le( float64_t a, float64_t b )
|
|
{
|
|
union f64_d uA, uB;
|
|
|
|
uA.f64 = a;
|
|
uB.f64 = b;
|
|
return (uA.d <= uB.d);
|
|
|
|
}
|
|
|
|
bool subj_f64_lt( float64_t a, float64_t b )
|
|
{
|
|
union f64_d uA, uB;
|
|
|
|
uA.f64 = a;
|
|
uB.f64 = b;
|
|
return (uA.d < uB.d);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
#if defined EXTFLOAT80 && defined LONG_DOUBLE_IS_EXTFLOAT80
|
|
|
|
void subj_ui32_to_extF80M( uint32_t a, extFloat80_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) = a;
|
|
|
|
}
|
|
|
|
void subj_ui64_to_extF80M( uint64_t a, extFloat80_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) = a;
|
|
|
|
}
|
|
|
|
void subj_i32_to_extF80M( int32_t a, extFloat80_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) = a;
|
|
|
|
}
|
|
|
|
void subj_i64_to_extF80M( int64_t a, extFloat80_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) = a;
|
|
|
|
}
|
|
|
|
void subj_f32_to_extF80M( float32_t a, extFloat80_t *zPtr )
|
|
{
|
|
union f32_f uA;
|
|
|
|
uA.f32 = a;
|
|
*((long double *) zPtr) = uA.f;
|
|
|
|
}
|
|
|
|
#ifdef FLOAT64
|
|
|
|
void subj_f64_to_extF80M( float64_t a, extFloat80_t *zPtr )
|
|
{
|
|
union f64_d uA;
|
|
|
|
uA.f64 = a;
|
|
*((long double *) zPtr) = uA.d;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
uint_fast32_t subj_extF80M_to_ui32_rx_minMag( const extFloat80_t *aPtr )
|
|
{
|
|
|
|
return *((const long double *) aPtr);
|
|
|
|
}
|
|
|
|
uint_fast64_t subj_extF80M_to_ui64_rx_minMag( const extFloat80_t *aPtr )
|
|
{
|
|
|
|
return *((const long double *) aPtr);
|
|
|
|
}
|
|
|
|
int_fast32_t subj_extF80M_to_i32_rx_minMag( const extFloat80_t *aPtr )
|
|
{
|
|
|
|
return *((const long double *) aPtr);
|
|
|
|
}
|
|
|
|
int_fast64_t subj_extF80M_to_i64_rx_minMag( const extFloat80_t *aPtr )
|
|
{
|
|
|
|
return *((const long double *) aPtr);
|
|
|
|
}
|
|
|
|
float32_t subj_extF80M_to_f32( const extFloat80_t *aPtr )
|
|
{
|
|
union f32_f uZ;
|
|
|
|
uZ.f = *((const long double *) aPtr);
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
#ifdef FLOAT64
|
|
|
|
float64_t subj_extF80M_to_f64( const extFloat80_t *aPtr )
|
|
{
|
|
union f64_d uZ;
|
|
|
|
uZ.d = *((const long double *) aPtr);
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
void
|
|
subj_extF80M_add(
|
|
const extFloat80_t *aPtr, const extFloat80_t *bPtr, extFloat80_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) =
|
|
*((const long double *) aPtr) + *((const long double *) bPtr);
|
|
|
|
}
|
|
|
|
void
|
|
subj_extF80M_sub(
|
|
const extFloat80_t *aPtr, const extFloat80_t *bPtr, extFloat80_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) =
|
|
*((const long double *) aPtr) - *((const long double *) bPtr);
|
|
|
|
}
|
|
|
|
void
|
|
subj_extF80M_mul(
|
|
const extFloat80_t *aPtr, const extFloat80_t *bPtr, extFloat80_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) =
|
|
*((const long double *) aPtr) * *((const long double *) bPtr);
|
|
|
|
}
|
|
|
|
void
|
|
subj_extF80M_div(
|
|
const extFloat80_t *aPtr, const extFloat80_t *bPtr, extFloat80_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) =
|
|
*((const long double *) aPtr) / *((const long double *) bPtr);
|
|
|
|
}
|
|
|
|
bool subj_extF80M_eq( const extFloat80_t *aPtr, const extFloat80_t *bPtr )
|
|
{
|
|
|
|
return (*((const long double *) aPtr) == *((const long double *) bPtr));
|
|
|
|
}
|
|
|
|
bool subj_extF80M_le( const extFloat80_t *aPtr, const extFloat80_t *bPtr )
|
|
{
|
|
|
|
return (*((const long double *) aPtr) <= *((const long double *) bPtr));
|
|
|
|
}
|
|
|
|
bool subj_extF80M_lt( const extFloat80_t *aPtr, const extFloat80_t *bPtr )
|
|
{
|
|
|
|
return (*((const long double *) aPtr) < *((const long double *) bPtr));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
#if defined FLOAT128 && defined LONG_DOUBLE_IS_FLOAT128
|
|
|
|
void subj_ui32_to_f128M( uint32_t a, float128_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) = a;
|
|
|
|
}
|
|
|
|
void subj_ui64_to_f128M( uint64_t a, float128_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) = a;
|
|
|
|
}
|
|
|
|
void subj_i32_to_f128M( int32_t a, float128_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) = a;
|
|
|
|
}
|
|
|
|
void subj_i64_to_f128M( int64_t a, float128_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) = a;
|
|
|
|
}
|
|
|
|
void subj_f32_to_f128M( float32_t a, float128_t *zPtr )
|
|
{
|
|
union f32_f uA;
|
|
|
|
uA.f32 = a;
|
|
*((long double *) zPtr) = uA.f;
|
|
|
|
}
|
|
|
|
#ifdef FLOAT64
|
|
|
|
void subj_f64_to_f128M( float64_t a, float128_t *zPtr )
|
|
{
|
|
union f64_d uA;
|
|
|
|
uA.f64 = a;
|
|
*((long double *) zPtr) = uA.d;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
uint_fast32_t subj_f128M_to_ui32_rx_minMag( const float128_t *aPtr )
|
|
{
|
|
|
|
return *((const long double *) aPtr);
|
|
|
|
}
|
|
|
|
uint_fast64_t subj_f128M_to_ui64_rx_minMag( const float128_t *aPtr )
|
|
{
|
|
|
|
return *((const long double *) aPtr);
|
|
|
|
}
|
|
|
|
int_fast32_t subj_f128M_to_i32_rx_minMag( const float128_t *aPtr )
|
|
{
|
|
|
|
return *((const long double *) aPtr);
|
|
|
|
}
|
|
|
|
int_fast64_t subj_f128M_to_i64_rx_minMag( const float128_t *aPtr )
|
|
{
|
|
|
|
return *((const long double *) aPtr);
|
|
|
|
}
|
|
|
|
float32_t subj_f128M_to_f32( const float128_t *aPtr )
|
|
{
|
|
union f32_f uZ;
|
|
|
|
uZ.f = *((const long double *) aPtr);
|
|
return uZ.f32;
|
|
|
|
}
|
|
|
|
#ifdef FLOAT64
|
|
|
|
float64_t subj_f128M_to_f64( const float128_t *aPtr )
|
|
{
|
|
union f64_d uZ;
|
|
|
|
uZ.d = *((const long double *) aPtr);
|
|
return uZ.f64;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
void
|
|
subj_f128M_add(
|
|
const float128_t *aPtr, const float128_t *bPtr, float128_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) =
|
|
*((const long double *) aPtr) + *((const long double *) bPtr);
|
|
|
|
}
|
|
|
|
void
|
|
subj_f128M_sub(
|
|
const float128_t *aPtr, const float128_t *bPtr, float128_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) =
|
|
*((const long double *) aPtr) - *((const long double *) bPtr);
|
|
|
|
}
|
|
|
|
void
|
|
subj_f128M_mul(
|
|
const float128_t *aPtr, const float128_t *bPtr, float128_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) =
|
|
*((const long double *) aPtr) * *((const long double *) bPtr);
|
|
|
|
}
|
|
|
|
#ifdef __STDC_VERSION__
|
|
#if 199901L <= __STDC_VERSION__
|
|
|
|
void
|
|
subj_f128M_mulAdd(
|
|
const float128_t *aPtr,
|
|
const float128_t *bPtr,
|
|
const float128_t *cPtr,
|
|
float128_t *zPtr
|
|
)
|
|
{
|
|
|
|
*((long double *) zPtr) =
|
|
fmal(
|
|
*((const long double *) aPtr),
|
|
*((const long double *) bPtr),
|
|
*((const long double *) cPtr)
|
|
);
|
|
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
void
|
|
subj_f128M_div(
|
|
const float128_t *aPtr, const float128_t *bPtr, float128_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) =
|
|
*((const long double *) aPtr) / *((const long double *) bPtr);
|
|
|
|
}
|
|
|
|
#ifdef __STDC_VERSION__
|
|
#if 199901L <= __STDC_VERSION__
|
|
|
|
void subj_f128M_sqrt( const float128_t *aPtr, float128_t *zPtr )
|
|
{
|
|
|
|
*((long double *) zPtr) = sqrtl( *((const long double *) aPtr) );
|
|
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
bool subj_f128M_eq( const float128_t *aPtr, const float128_t *bPtr )
|
|
{
|
|
|
|
return (*((const long double *) aPtr) == *((const long double *) bPtr));
|
|
|
|
}
|
|
|
|
bool subj_f128M_le( const float128_t *aPtr, const float128_t *bPtr )
|
|
{
|
|
|
|
return (*((const long double *) aPtr) <= *((const long double *) bPtr));
|
|
|
|
}
|
|
|
|
bool subj_f128M_lt( const float128_t *aPtr, const float128_t *bPtr )
|
|
{
|
|
|
|
return (*((const long double *) aPtr) < *((const long double *) bPtr));
|
|
|
|
}
|
|
|
|
#endif
|
|
|