cvw/src/uncore/plic_apb.sv
2024-04-21 07:43:01 -07:00

258 lines
12 KiB
Systemverilog

///////////////////////////////////////////
// plic_apb.sv
//
// Written: bbracker@hmc.edu 18 January 2021
// Modified:
//
// Purpose: Platform-Level Interrupt Controller
// Based on RISC-V spec (https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc)
// With clarifications from ROA's existing implementation (https://roalogic.github.io/plic/docs/AHB-Lite_PLIC_Datasheet.pdf)
// Supports only 1 target core and only a global threshold.
// This PLIC implementation serves as both the PLIC Gateways and PLIC Core.
// It assumes interrupt sources are level-triggered wires.
//
// Documentation: RISC-V System on Chip Design Chapter 15
//
// A component of the CORE-V-WALLY configurable RISC-V project.
// https://github.com/openhwgroup/cvw
//
// Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University
//
// SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1
//
// Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file
// except in compliance with the License, or, at your option, the Apache License version 2.0. You
// may obtain a copy of the License at
//
// https://solderpad.org/licenses/SHL-2.1/
//
// Unless required by applicable law or agreed to in writing, any work distributed under the
// License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
////////////////////////////////////////////////////////////////////////////////////////////////
// number of interrupt sources
// does not include source 0, which does not connect to anything according to spec
// up to 63 sources supported; in the future, allow up to 1023 sources
`define C 2
// number of conexts
// hardcoded to 2 contexts for now; later upgrade to arbitrary (up to 15872) contexts
module plic_apb import cvw::*; #(parameter cvw_t P) (
input logic PCLK, PRESETn,
input logic PSEL,
input logic [27:0] PADDR,
input logic [P.XLEN-1:0] PWDATA,
input logic [P.XLEN/8-1:0] PSTRB,
input logic PWRITE,
input logic PENABLE,
output logic [P.XLEN-1:0] PRDATA,
output logic PREADY,
input logic UARTIntr,GPIOIntr, SPIIntr, SDCIntr,
output logic MExtInt, SExtInt
);
// register map
localparam PLIC_INTPRIORITY0 = 24'h000000;
localparam PLIC_INTPENDING0 = 24'h001000;
localparam PLIC_INTPENDING1 = 24'h001004;
localparam PLIC_INTEN00 = 24'h002000;
localparam PLIC_INTEN01 = 24'h002004;
localparam PLIC_INTEN10 = 24'h002080;
localparam PLIC_INTEN11 = 24'h002084;
localparam PLIC_THRESHOLD0 = 24'h200000;
localparam PLIC_CLAIMCOMPLETE0 = 24'h200004;
localparam PLIC_THRESHOLD1 = 24'h201000;
localparam PLIC_CLAIMCOMPLETE1 = 24'h201004;
logic memwrite, memread;
logic [23:0] entry;
logic [31:0] Din, Dout;
// context-independent signals
logic [P.PLIC_NUM_SRC:1] requests;
logic [P.PLIC_NUM_SRC:1][2:0] intPriority;
logic [P.PLIC_NUM_SRC:1] intInProgress, intPending, nextIntPending;
// context-dependent signals
logic [`C-1:0][2:0] intThreshold;
logic [`C-1:0][P.PLIC_NUM_SRC:1] intEn;
logic [`C-1:0][5:0] intClaim; // ID's are 6 bits if we stay within 63 sources
logic [`C-1:0][7:1][P.PLIC_NUM_SRC:1] irqMatrix;
logic [`C-1:0][7:1] priorities_with_irqs;
logic [`C-1:0][7:1] max_priority_with_irqs;
logic [`C-1:0][P.PLIC_NUM_SRC:1] irqs_at_max_priority;
logic [`C-1:0][7:1] threshMask;
logic [P.PLIC_NUM_SRC-1:0] One;
// hacks to handle gracefully PLIC_NUM_SRC being smaller than 32
// Otherwise Questa and other simulators produce part-select out of bounds even
// though sources >=32 are never used
localparam PLIC_SRC_TOP = (P.PLIC_NUM_SRC >= 32) ? P.PLIC_NUM_SRC : 1;
localparam PLIC_SRC_BOT = (P.PLIC_NUM_SRC >= 32) ? 32 : 1;
localparam PLIC_SRC_DINTOP = (P.PLIC_NUM_SRC >= 32) ? P.PLIC_NUM_SRC -32 : 0;
localparam PLIC_SRC_EXT = (P.PLIC_NUM_SRC >= 32) ? 63-P.PLIC_NUM_SRC : 31;
// =======
// AHB I/O
// =======
assign memwrite = PWRITE & PENABLE & PSEL; // only write in access phase
assign memread = ~PWRITE & PSEL; // read at start of access phase. PENABLE hasn't set up before this
assign PREADY = 1'b1; // PLIC never takes >1 cycle to respond
assign entry = {PADDR[23:2],2'b0};
assign One[P.PLIC_NUM_SRC-1:1] = '0; assign One[0] = 1'b1; // Vivado does not like this as a single assignment.
// account for subword read/write circuitry
// -- Note PLIC registers are 32 bits no matter what; access them with LW SW.
assign Din = PWDATA[31:0];
if (P.XLEN == 64) assign PRDATA = {Dout, Dout};
else assign PRDATA = Dout;
// ==================
// Register Interface
// ==================
localparam PLIC_NUM_SRC_MIN_32 = P.PLIC_NUM_SRC < 32 ? P.PLIC_NUM_SRC : 31;
always_ff @(posedge PCLK) begin
// resetting
if (~PRESETn) begin
intPriority <= '0;
intEn <= '0;
intThreshold <= '0;
intInProgress <= '0;
// writing
end else begin
if (memwrite)
casez(entry)
24'h0000??: intPriority[entry[7:2]] <= Din[2:0];
PLIC_INTEN00: intEn[0][PLIC_NUM_SRC_MIN_32:1] <= Din[PLIC_NUM_SRC_MIN_32:1];
PLIC_INTEN10: intEn[1][PLIC_NUM_SRC_MIN_32:1] <= Din[PLIC_NUM_SRC_MIN_32:1];
PLIC_INTEN01: if (P.PLIC_NUM_SRC >= 32) intEn[0][PLIC_SRC_TOP:PLIC_SRC_BOT] <= Din[PLIC_SRC_DINTOP:0];
PLIC_INTEN11: if (P.PLIC_NUM_SRC >= 32) intEn[1][PLIC_SRC_TOP:PLIC_SRC_BOT] <= Din[PLIC_SRC_DINTOP:0];
PLIC_THRESHOLD0: intThreshold[0] <= Din[2:0];
PLIC_CLAIMCOMPLETE0: intInProgress <= intInProgress & ~(One << (Din[5:0]-1)); // lower "InProgress" to signify completion
PLIC_THRESHOLD1: intThreshold[1] <= Din[2:0];
PLIC_CLAIMCOMPLETE1: intInProgress <= intInProgress & ~(One << (Din[5:0]-1)); // lower "InProgress" to signify completion
endcase
// Read synchronously because a read can have side effect of changing intInProgress
if (memread) begin
casez(entry)
PLIC_INTPRIORITY0: Dout <= 32'b0; // there is no intPriority[0]
24'h0000??: Dout <= {29'b0,intPriority[entry[7:2]]};
PLIC_INTPENDING0: Dout <= {{(31-PLIC_NUM_SRC_MIN_32){1'b0}},intPending[PLIC_NUM_SRC_MIN_32:1],1'b0};
PLIC_INTEN00: Dout <= {{(31-PLIC_NUM_SRC_MIN_32){1'b0}},intEn[0][PLIC_NUM_SRC_MIN_32:1],1'b0};
PLIC_INTPENDING1: if (P.PLIC_NUM_SRC >= 32) Dout <= {{(PLIC_SRC_EXT){1'b0}},intPending[PLIC_SRC_TOP:PLIC_SRC_BOT]};
PLIC_INTEN01: if (P.PLIC_NUM_SRC >= 32) Dout <= {{(PLIC_SRC_EXT){1'b0}},intEn[0][PLIC_SRC_TOP:PLIC_SRC_BOT]};
PLIC_INTEN10: Dout <= {{(31-PLIC_NUM_SRC_MIN_32){1'b0}},intEn[1][PLIC_NUM_SRC_MIN_32:1],1'b0};
PLIC_INTEN11: if (P.PLIC_NUM_SRC >= 32) Dout <= {{(PLIC_SRC_EXT){1'b0}},intEn[1][PLIC_SRC_TOP:PLIC_SRC_BOT]};
PLIC_THRESHOLD0: Dout <= {29'b0,intThreshold[0]};
PLIC_CLAIMCOMPLETE0: begin
Dout <= {26'b0,intClaim[0]};
intInProgress <= intInProgress | (One << (intClaim[0]-1)); // claimed requests are currently in progress of being serviced until they are completed
end
PLIC_THRESHOLD1: Dout <= {29'b0,intThreshold[1]};
PLIC_CLAIMCOMPLETE1: begin
Dout <= {26'b0,intClaim[1]};
intInProgress <= intInProgress | (One << (intClaim[1]-1)); // claimed requests are currently in progress of being serviced until they are completed
end
default: Dout <= 32'h0; // invalid access
endcase
end else Dout <= 32'h0;
end
end
// connect sources to requests
always_comb begin
requests = {P.PLIC_NUM_SRC{1'b0}};
if(P.PLIC_GPIO_ID != 0) requests[P.PLIC_GPIO_ID] = GPIOIntr;
if(P.PLIC_UART_ID != 0) requests[P.PLIC_UART_ID] = UARTIntr;
if(P.PLIC_SPI_ID != 0) requests[P.PLIC_SPI_ID] = SPIIntr;
if(P.PLIC_SDC_ID !=0) requests[P.PLIC_SDC_ID] = SDCIntr;
end
// pending interrupt request
assign nextIntPending = (intPending | requests) & ~intInProgress;
flopr #(P.PLIC_NUM_SRC) intPendingFlop(PCLK,~PRESETn,nextIntPending,intPending);
// context-dependent signals
genvar ctx;
for (ctx=0; ctx<`C; ctx++) begin
// request matrix
// priority level (rows) X source ID (columns)
//
// irqMatrix[ctx][pri][src] is high if source <src>
// has priority level <pri> and has an "active" interrupt request
// ("active" meaning it is enabled in context <ctx> and is pending)
genvar src, pri;
for (pri=1; pri<=7; pri++) begin
for (src=1; src<=P.PLIC_NUM_SRC; src++) begin
assign irqMatrix[ctx][pri][src] = (intPriority[src]==pri) & intPending[src] & intEn[ctx][src];
end
end
// which prority levels have one or more active requests?
assign priorities_with_irqs[ctx][7:1] = {
|irqMatrix[ctx][7],
|irqMatrix[ctx][6],
|irqMatrix[ctx][5],
|irqMatrix[ctx][4],
|irqMatrix[ctx][3],
|irqMatrix[ctx][2],
|irqMatrix[ctx][1]
};
// get the highest priority level that has active requests
assign max_priority_with_irqs[ctx][7:1] = {
priorities_with_irqs[ctx][7],
priorities_with_irqs[ctx][6] & ~|priorities_with_irqs[ctx][7],
priorities_with_irqs[ctx][5] & ~|priorities_with_irqs[ctx][7:6],
priorities_with_irqs[ctx][4] & ~|priorities_with_irqs[ctx][7:5],
priorities_with_irqs[ctx][3] & ~|priorities_with_irqs[ctx][7:4],
priorities_with_irqs[ctx][2] & ~|priorities_with_irqs[ctx][7:3],
priorities_with_irqs[ctx][1] & ~|priorities_with_irqs[ctx][7:2]
};
// of the sources at the highest priority level that has active requests,
// which sources have active requests?
assign irqs_at_max_priority[ctx][P.PLIC_NUM_SRC:1] =
({P.PLIC_NUM_SRC{max_priority_with_irqs[ctx][7]}} & irqMatrix[ctx][7]) |
({P.PLIC_NUM_SRC{max_priority_with_irqs[ctx][6]}} & irqMatrix[ctx][6]) |
({P.PLIC_NUM_SRC{max_priority_with_irqs[ctx][5]}} & irqMatrix[ctx][5]) |
({P.PLIC_NUM_SRC{max_priority_with_irqs[ctx][4]}} & irqMatrix[ctx][4]) |
({P.PLIC_NUM_SRC{max_priority_with_irqs[ctx][3]}} & irqMatrix[ctx][3]) |
({P.PLIC_NUM_SRC{max_priority_with_irqs[ctx][2]}} & irqMatrix[ctx][2]) |
({P.PLIC_NUM_SRC{max_priority_with_irqs[ctx][1]}} & irqMatrix[ctx][1]);
// of the sources at the highest priority level that has active requests,
// choose the source with the lowest source ID to be the most urgent
// and set intClaim to the source ID of the most urgent active request
integer k;
always_comb begin
intClaim[ctx] = 6'b0;
for (k=P.PLIC_NUM_SRC; k>0; k--) begin
if (irqs_at_max_priority[ctx][k]) intClaim[ctx] = k[5:0];
end
end
// create threshold mask
always_comb begin
threshMask[ctx][7] = (intThreshold[ctx] != 7);
threshMask[ctx][6] = (intThreshold[ctx] != 6) & threshMask[ctx][7];
threshMask[ctx][5] = (intThreshold[ctx] != 5) & threshMask[ctx][6];
threshMask[ctx][4] = (intThreshold[ctx] != 4) & threshMask[ctx][5];
threshMask[ctx][3] = (intThreshold[ctx] != 3) & threshMask[ctx][4];
threshMask[ctx][2] = (intThreshold[ctx] != 2) & threshMask[ctx][3];
threshMask[ctx][1] = (intThreshold[ctx] != 1) & threshMask[ctx][2];
end
end
// is the max priority > threshold?
// would it be any better to first priority encode maxPriority into binary and then ">" with threshold?
assign MExtInt = |(threshMask[0] & priorities_with_irqs[0]);
assign SExtInt = |(threshMask[1] & priorities_with_irqs[1]);
endmodule