/////////////////////////////////////////// // icache.sv // // Written: jaallen@g.hmc.edu 2021-03-02 // Modified: // // Purpose: Cache instructions for the ifu so it can access memory less often, saving cycles // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT // OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /////////////////////////////////////////// `include "wally-config.vh" module icache( // Basic pipeline stuff input logic clk, reset, input logic StallF, StallD, input logic FlushD, // Upper bits of physical address for PC input logic [`XLEN-1:12] UpperPCPF, // Lower 12 bits of virtual PC address, since it's faster this way input logic [11:0] LowerPCF, // Data read in from the ebu unit input logic [`XLEN-1:0] InstrInF, input logic InstrAckF, // Read requested from the ebu unit output logic [`XLEN-1:0] InstrPAdrF, output logic InstrReadF, // High if the instruction currently in the fetch stage is compressed output logic CompressedF, // High if the icache is requesting a stall output logic ICacheStallF, // The raw (not decompressed) instruction that was requested // If the next instruction is compressed, the upper 16 bits may be anything output logic [31:0] InstrRawD ); // Configuration parameters // TODO Move these to a config file localparam integer ICACHELINESIZE = 256; localparam integer ICACHENUMLINES = 512; // Input signals to cache memory logic FlushMem; logic [`XLEN-1:12] ICacheMemReadUpperPAdr; logic [11:0] ICacheMemReadLowerAdr; logic ICacheMemWriteEnable; logic [ICACHELINESIZE-1:0] ICacheMemWriteData; logic [`XLEN-1:0] ICacheMemWritePAdr; // Output signals from cache memory logic [`XLEN-1:0] ICacheMemReadData; logic ICacheMemReadValid; rodirectmappedmem #(.LINESIZE(ICACHELINESIZE), .NUMLINES(ICACHENUMLINES)) cachemem( .*, .flush(FlushMem), .ReadUpperPAdr(ICacheMemReadUpperPAdr), .ReadLowerAdr(ICacheMemReadLowerAdr), .WriteEnable(ICacheMemWriteEnable), .WriteLine(ICacheMemWriteData), .WritePAdr(ICacheMemWritePAdr), .DataWord(ICacheMemReadData), .DataValid(ICacheMemReadValid) ); icachecontroller #(.LINESIZE(ICACHELINESIZE)) controller(.*); assign FlushMem = 1'b0; endmodule module icachecontroller #(parameter LINESIZE = 256) ( // Inputs from pipeline input logic clk, reset, input logic StallF, StallD, input logic FlushD, // Input the address to read // The upper bits of the physical pc input logic [`XLEN-1:12] UpperPCPF, // The lower bits of the virtual pc input logic [11:0] LowerPCF, // Signals to/from cache memory // The read coming out of it input logic [`XLEN-1:0] ICacheMemReadData, input logic ICacheMemReadValid, // The address at which we want to search the cache memory output logic [`XLEN-1:12] ICacheMemReadUpperPAdr, output logic [11:0] ICacheMemReadLowerAdr, // Load data into the cache output logic ICacheMemWriteEnable, output logic [LINESIZE-1:0] ICacheMemWriteData, output logic [`XLEN-1:0] ICacheMemWritePAdr, // Outputs to rest of ifu // High if the instruction in the fetch stage is compressed output logic CompressedF, // The instruction that was requested // If this instruction is compressed, upper 16 bits may be the next 16 bits or may be zeros output logic [31:0] InstrRawD, // Outputs to pipeline control stuff output logic ICacheStallF, // Signals to/from ahblite interface // A read containing the requested data input logic [`XLEN-1:0] InstrInF, input logic InstrAckF, // The read we request from main memory output logic [`XLEN-1:0] InstrPAdrF, output logic InstrReadF ); logic [31:0] AlignedInstrRawF, AlignedInstrRawD; logic FlushDLastCycleN; const logic [31:0] NOP = 32'h13; // TODO allow compressed instructions // (start with noncompressed only to get something working) assign CompressedF = 1'b0; // Handle happy path (data in cache, reads aligned) always_comb begin assign ICacheMemReadLowerAdr = LowerPCF; assign ICacheMemReadUpperPAdr = UpperPCPF; end generate if (`XLEN == 32) begin assign AlignedInstrRawF = ICacheMemReadData; end else begin assign AlignedInstrRawF = LowerPCF[2] ? ICacheMemReadData[63:32] : ICacheMemReadData[31:0]; end endgenerate flopenr #(32) AlignedInstrRawDFlop(clk, reset, ~StallD, AlignedInstrRawF, AlignedInstrRawD); flopr #(1) FlushDLastCycleFlop(clk, reset, ~FlushD & (FlushDLastCycleN | ~StallF), FlushDLastCycleN); mux2 #(32) InstrRawDMux(AlignedInstrRawD, NOP, ~FlushDLastCycleN, InstrRawD); // Handle cache faults localparam integer WORDSPERLINE = LINESIZE/`XLEN; localparam integer LOGWPL = $clog2(WORDSPERLINE); localparam integer OFFSETWIDTH = $clog2(LINESIZE/8); logic FetchState, EndFetchState, BeginFetchState; logic [LOGWPL:0] FetchWordNum, NextFetchWordNum; logic [`XLEN-1:0] LineAlignedPCPF; flopr #(1) FetchStateFlop(clk, reset, BeginFetchState | (FetchState & ~EndFetchState), FetchState); flopr #(LOGWPL+1) FetchWordNumFlop(clk, reset, NextFetchWordNum, FetchWordNum); genvar i; generate for (i=0; i < WORDSPERLINE; i++) begin flopenr #(`XLEN) flop(clk, reset, FetchState & (i == FetchWordNum), InstrInF, ICacheMemWriteData[(i+1)*`XLEN-1:i*`XLEN]); end endgenerate // Enter the fetch state when we hit a cache fault always_comb begin assign BeginFetchState = ~ICacheMemReadValid & ~FetchState; end // Machinery to request the correct addresses from main memory always_comb begin assign InstrReadF = FetchState & ~EndFetchState; assign LineAlignedPCPF = {UpperPCPF, LowerPCF[11:OFFSETWIDTH], {OFFSETWIDTH{1'b0}}}; assign InstrPAdrF = LineAlignedPCPF + FetchWordNum*(`XLEN/8); assign NextFetchWordNum = FetchState ? FetchWordNum+InstrAckF : {LOGWPL+1{1'b0}}; end // Write to cache memory when we have the line here always_comb begin assign EndFetchState = FetchWordNum == {1'b1, {LOGWPL{1'b0}}} & FetchState; assign ICacheMemWritePAdr = LineAlignedPCPF; assign ICacheMemWriteEnable = EndFetchState; end // Stall the pipeline while loading a new line from memory always_comb begin assign ICacheStallF = FetchState | ~ICacheMemReadValid; end endmodule module oldicache( // Basic pipeline stuff input logic clk, reset, input logic StallF, StallD, input logic FlushD, // Upper bits of physical address for PC input logic [`XLEN-1:12] UpperPCPF, // Lower 12 bits of virtual PC address, since it's faster this way input logic [11:0] LowerPCF, // Data read in from the ebu unit input logic [`XLEN-1:0] InstrInF, // Read requested from the ebu unit output logic [`XLEN-1:0] InstrPAdrF, output logic InstrReadF, // High if the instruction currently in the fetch stage is compressed output logic CompressedF, // High if the icache is requesting a stall output logic ICacheStallF, // The raw (not decompressed) instruction that was requested // If the next instruction is compressed, the upper 16 bits may be anything output logic [31:0] InstrRawD ); logic DelayF, DelaySideF, FlushDLastCyclen, DelayD; logic [1:0] InstrDMuxChoice; logic [15:0] MisalignedHalfInstrF, MisalignedHalfInstrD; logic [31:0] InstrF, AlignedInstrD; // Buffer the last read, for ease of accessing it again logic LastReadDataValidF; logic [`XLEN-1:0] LastReadDataF, LastReadAdrF, InDataF; // instruction for NOP logic [31:0] nop = 32'h00000013; // Temporary change to bridge the new interface to old behaviors logic [`XLEN-1:0] PCPF; assign PCPF = {UpperPCPF, LowerPCF}; // This flop doesn't stall if StallF is high because we should output a nop // when FlushD happens, even if the pipeline is also stalled. flopr #(1) flushDLastCycleFlop(clk, reset, ~FlushD & (FlushDLastCyclen | ~StallF), FlushDLastCyclen); flopenr #(1) delayDFlop(clk, reset, ~StallF, DelayF & ~CompressedF, DelayD); flopenrc#(1) delayStateFlop(clk, reset, FlushD, ~StallF, DelayF & ~DelaySideF, DelaySideF); // This flop stores the first half of a misaligned instruction while waiting for the other half flopenr #(16) halfInstrFlop(clk, reset, DelayF & ~StallF, MisalignedHalfInstrF, MisalignedHalfInstrD); // This flop is here to simulate pulling data out of the cache, which is edge-triggered flopenr #(32) instrFlop(clk, reset, ~StallF, InstrF, AlignedInstrD); // These flops cache the previous read, to accelerate things flopenr #(`XLEN) lastReadDataFlop(clk, reset, InstrReadF & ~StallF, InstrInF, LastReadDataF); flopenr #(1) lastReadDataVFlop(clk, reset, InstrReadF & ~StallF, 1'b1, LastReadDataValidF); flopenr #(`XLEN) lastReadAdrFlop(clk, reset, InstrReadF & ~StallF, InstrPAdrF, LastReadAdrF); // Decide which address needs to be fetched and sent out over InstrPAdrF // If the requested address fits inside one read from memory, we fetch that // address, adjusted to the bit width. Otherwise, we request the lower word // and then the upper word, in that order. generate if (`XLEN == 32) begin assign InstrPAdrF = PCPF[1] ? ((DelaySideF & ~CompressedF) ? {PCPF[31:2], 2'b00} : {PCPF[31:2], 2'b00}) : PCPF; end else begin assign InstrPAdrF = PCPF[2] ? (PCPF[1] ? ((DelaySideF & ~CompressedF) ? {PCPF[63:3]+1, 3'b000} : {PCPF[63:3], 3'b000}) : {PCPF[63:3], 3'b000}) : {PCPF[63:3], 3'b000}; end endgenerate // Read from memory if we don't have the address we want always_comb if (LastReadDataValidF & (InstrPAdrF == LastReadAdrF)) begin assign InstrReadF = 0; end else begin assign InstrReadF = 1; end // Pick from the memory input or from the previous read, as appropriate mux2 #(`XLEN) inDataMux(LastReadDataF, InstrInF, InstrReadF, InDataF); // If the instruction fits in one memory read, then we put the right bits // into InstrF. Otherwise, we activate DelayF to signal the rest of the // machinery to swizzle bits. generate if (`XLEN == 32) begin assign InstrF = PCPF[1] ? {16'b0, InDataF[31:16]} : InDataF; assign DelayF = PCPF[1]; assign MisalignedHalfInstrF = InDataF[31:16]; end else begin assign InstrF = PCPF[2] ? (PCPF[1] ? {16'b0, InDataF[63:48]} : InDataF[63:32]) : (PCPF[1] ? InDataF[47:16] : InDataF[31:0]); assign DelayF = PCPF[1] && PCPF[2]; assign MisalignedHalfInstrF = InDataF[63:48]; end endgenerate // We will likely need to stall later, but stalls are handled by the rest of the pipeline for now assign ICacheStallF = 0; // Detect if the instruction is compressed assign CompressedF = InstrF[1:0] != 2'b11; // Pick the correct output, depending on whether we have to assemble this // instruction from two reads or not. // Output the requested instruction (we don't need to worry if the read is // incomplete, since the pipeline stalls for us when it isn't), or a NOP for // the cycle when the first of two reads comes in. always_comb if (~FlushDLastCyclen) begin assign InstrDMuxChoice = 2'b10; end else if (DelayD & (MisalignedHalfInstrD[1:0] != 2'b11)) begin assign InstrDMuxChoice = 2'b11; end else begin assign InstrDMuxChoice = {1'b0, DelayD}; end mux4 #(32) instrDMux (AlignedInstrD, {InstrInF[15:0], MisalignedHalfInstrD}, nop, {16'b0, MisalignedHalfInstrD}, InstrDMuxChoice, InstrRawD); endmodule