// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * AXI SD Card driver. * * AXI SD Card is open source Verilog implementation of high speed SD card controller. * It is mainly used in FPGA designs. */ #ifdef CONFIG_DEBUG_INFO #pragma GCC optimize("O0") #endif // Capability bits #define SDC_CAPABILITY_SD_4BIT 0x0001 #define SDC_CAPABILITY_SD_RESET 0x0002 #define SDC_CAPABILITY_ADDR 0xff00 // Control bits #define SDC_CONTROL_SD_4BIT 0x0001 #define SDC_CONTROL_SD_RESET 0x0002 // Card detect bits #define SDC_CARD_INSERT_INT_EN 0x0001 #define SDC_CARD_INSERT_INT_REQ 0x0002 #define SDC_CARD_REMOVE_INT_EN 0x0004 #define SDC_CARD_REMOVE_INT_REQ 0x0008 // Command status bits #define SDC_CMD_INT_STATUS_CC 0x0001 // Command complete #define SDC_CMD_INT_STATUS_EI 0x0002 // Any error #define SDC_CMD_INT_STATUS_CTE 0x0004 // Timeout #define SDC_CMD_INT_STATUS_CCRC 0x0008 // CRC error #define SDC_CMD_INT_STATUS_CIE 0x0010 // Command code check error // Data status bits #define SDC_DAT_INT_STATUS_TRS 0x0001 // Transfer complete #define SDC_DAT_INT_STATUS_ERR 0x0002 // Any error #define SDC_DAT_INT_STATUS_CTE 0x0004 // Timeout #define SDC_DAT_INT_STATUS_CRC 0x0008 // CRC error #define SDC_DAT_INT_STATUS_CFE 0x0010 // Data FIFO underrun or overrun #define CMD_TIMEOUT_MS 1000 #define BUSY_TIMEOUT_MS 500 struct sdc_regs { volatile uint32_t argument; volatile uint32_t command; volatile uint32_t response1; volatile uint32_t response2; volatile uint32_t response3; volatile uint32_t response4; volatile uint32_t data_timeout; volatile uint32_t control; volatile uint32_t cmd_timeout; volatile uint32_t clock_divider; volatile uint32_t software_reset; volatile uint32_t power_control; volatile uint32_t capability; volatile uint32_t cmd_int_status; volatile uint32_t cmd_int_enable; volatile uint32_t dat_int_status; volatile uint32_t dat_int_enable; volatile uint32_t block_size; volatile uint32_t block_count; volatile uint32_t card_detect; volatile uint32_t res_50; volatile uint32_t res_54; volatile uint32_t res_58; volatile uint32_t res_5c; volatile uint64_t dma_addres; }; struct sdc_host { struct platform_device * pdev; struct sdc_regs __iomem * regs; uint32_t clk_freq; spinlock_t lock; struct mmc_request * mrq; struct mmc_data * data; unsigned dma_addr_bits; unsigned dma_count; dma_addr_t dma_addr; unsigned dma_size; int irq; }; static const struct of_device_id axi_sdc_of_match_table[] = { { .compatible = "riscv,axi-sd-card-1.0" }, {}, }; MODULE_DEVICE_TABLE(of, axi_sdc_of_match_table); /* Set clock prescalar value based on the required clock in HZ */ static void sdc_set_clock(struct sdc_host * host, uint clock) { unsigned clk_div; /* Min clock frequency should be 400KHz */ if (clock < 400000) clock = 400000; clk_div = host->clk_freq / (2 * clock); if (clk_div > 0x100) clk_div = 0x100; if (clk_div < 1) clk_div = 1; if (host->regs->clock_divider != clk_div - 1) { host->regs->clock_divider = clk_div - 1; udelay(10000); } } static void sdc_cmd_finish(struct sdc_host * host, struct mmc_command * cmd) { while (1) { unsigned status = host->regs->cmd_int_status; if (status) { // clear interrupts host->regs->cmd_int_status = 0; while (host->regs->software_reset != 0) {} if (status == SDC_CMD_INT_STATUS_CC) { // get response cmd->resp[0] = host->regs->response1; if (cmd->flags & MMC_RSP_136) { cmd->resp[1] = host->regs->response2; cmd->resp[2] = host->regs->response3; cmd->resp[3] = host->regs->response4; } break; } cmd->error = (status & SDC_CMD_INT_STATUS_CTE) ? -ETIME : -EIO; break; } } } static int sdc_setup_data_xfer(struct sdc_host * host, struct mmc_host * mmc, struct mmc_data * data) { uint64_t timeout = 0; data->bytes_xfered = 0; if (host->dma_addr & 3) return -EINVAL; if (data->blksz & 3) return -EINVAL; if (data->blksz < 4) return -EINVAL; if (data->blksz > 0x1000) return -EINVAL; if (data->blocks > 0x10000) return -EINVAL; if (host->dma_addr + data->blksz * data->blocks > ((uint64_t)1 << host->dma_addr_bits)) return -EINVAL; if (data->sg->length < data->blksz * data->blocks) return -EINVAL; // SD card data transfer time timeout += data->blocks * data->blksz * 8 / (1 << mmc->ios.bus_width); // SD card "busy" time timeout += (uint64_t)mmc->ios.clock * BUSY_TIMEOUT_MS / 1000 * data->blocks; host->regs->dma_addres = (uint64_t)host->dma_addr; host->regs->block_size = data->blksz - 1; host->regs->block_count = data->blocks - 1; host->regs->data_timeout = (uint32_t)timeout; if (host->regs->data_timeout != timeout) host->regs->data_timeout = 0; return 0; } static int sdc_send_cmd(struct sdc_host * host, struct mmc_host * mmc, struct mmc_command * cmd, struct mmc_data * data) { int command = cmd->opcode << 8; uint64_t timeout = 0; int xfer = 0; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) command |= 2; else { command |= 1; } } if (cmd->flags & MMC_RSP_BUSY) command |= 1 << 2; if (cmd->flags & MMC_RSP_CRC) command |= 1 << 3; if (cmd->flags & MMC_RSP_OPCODE) command |= 1 << 4; if (data && (data->flags & (MMC_DATA_READ | MMC_DATA_WRITE)) && data->blocks) { host->dma_count = dma_map_sg(&host->pdev->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); if (host->dma_count != 1) { dma_unmap_sg(&host->pdev->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); return data->error = -EIO; } host->dma_addr = sg_dma_address(data->sg); host->dma_size = sg_dma_len(data->sg); if (data->flags & MMC_DATA_READ) command |= 1 << 5; if (data->flags & MMC_DATA_WRITE) command |= 1 << 6; data->error = sdc_setup_data_xfer(host, mmc, data); if (data->error < 0) { dma_unmap_sg(&host->pdev->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); return data->error; } xfer = 1; } timeout = (uint64_t)mmc->ios.clock * CMD_TIMEOUT_MS / 1000; host->regs->command = command; host->regs->cmd_timeout = (uint32_t)timeout; if (host->regs->cmd_timeout != timeout) host->regs->cmd_timeout = 0; host->regs->argument = cmd->arg; sdc_cmd_finish(host, cmd); if (cmd->error < 0) { if (xfer) dma_unmap_sg(&host->pdev->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); return cmd->error; } if (xfer) host->data = data; return 0; } static void sdc_request(struct mmc_host * mmc, struct mmc_request * mrq) { struct sdc_host * host = mmc_priv(mmc); /* Clear the error statuses in case this is a retry */ if (mrq->sbc) mrq->sbc->error = 0; if (mrq->cmd) mrq->cmd->error = 0; if (mrq->data) mrq->data->error = 0; if (mrq->stop) mrq->stop->error = 0; spin_lock_irq(&host->lock); host->data = NULL; host->mrq = mrq; if (!mrq->sbc || sdc_send_cmd(host, mmc, mrq->sbc, NULL) == 0) { sdc_send_cmd(host, mmc, mrq->cmd, mrq->data); } if (host->data == NULL) { mmc_request_done(mmc, mrq); host->mrq = NULL; } else { host->regs->dat_int_enable = SDC_DAT_INT_STATUS_TRS | SDC_DAT_INT_STATUS_ERR; } spin_unlock_irq(&host->lock); } static void sdc_set_ios(struct mmc_host * mmc, struct mmc_ios * ios) { struct sdc_host * host = mmc_priv(mmc); spin_lock_irq(&host->lock); sdc_set_clock(host, ios->clock); host->regs->control = ios->bus_width == MMC_BUS_WIDTH_4 ? SDC_CONTROL_SD_4BIT : 0; spin_unlock_irq(&host->lock); } static void sdc_reset(struct mmc_host * mmc) { struct sdc_host * host = mmc_priv(mmc); uint32_t card_detect = 0; spin_lock_init(&host->lock); spin_lock_irq(&host->lock); sdc_set_clock(host, 400000); // software reset host->regs->software_reset = 1; while ((host->regs->software_reset & 1) == 0) {} // clear software reset host->regs->software_reset = 0; while (host->regs->software_reset != 0) {} udelay(10000); // set bus width 1 bit host->regs->control = 0; // disable cmd/data interrupts host->regs->cmd_int_enable = 0; host->regs->dat_int_enable = 0; // clear cmd/data interrupts host->regs->cmd_int_status = 0; host->regs->dat_int_status = 0; // enable card detect interrupt card_detect = host->regs->card_detect; if (card_detect & SDC_CARD_INSERT_INT_REQ) { host->regs->card_detect = SDC_CARD_REMOVE_INT_EN; } else if (card_detect & SDC_CARD_REMOVE_INT_REQ) { host->regs->card_detect = SDC_CARD_INSERT_INT_EN; } while (host->regs->software_reset != 0) {} spin_unlock_irq(&host->lock); } static void sdc_card_reset(struct mmc_host * mmc) { struct sdc_host * host = mmc_priv(mmc); uint32_t control = 0; spin_lock_irq(&host->lock); control = host->regs->control; host->regs->control = control | SDC_CONTROL_SD_RESET; udelay(10); host->regs->control = control & ~(uint32_t)SDC_CONTROL_SD_RESET; udelay(10); spin_unlock_irq(&host->lock); } static int sdc_get_cd(struct mmc_host * mmc) { struct sdc_host * host = mmc_priv(mmc); uint32_t card_detect = host->regs->card_detect; if (card_detect == 0) return 1; /* Card detect not supported */ return (card_detect & SDC_CARD_INSERT_INT_REQ) != 0; } static irqreturn_t sdc_isr(int irq, void * dev_id) { struct mmc_host * mmc = (struct mmc_host *)dev_id; struct sdc_host * host = mmc_priv(mmc); uint32_t card_detect = 0; uint32_t data_status = 0; unsigned long flags; spin_lock_irqsave(&host->lock, flags); card_detect = host->regs->card_detect; if (card_detect & SDC_CARD_INSERT_INT_REQ) { if (card_detect & SDC_CARD_INSERT_INT_EN) { host->regs->card_detect = SDC_CARD_REMOVE_INT_EN; mmc_detect_change(mmc, 0); } } else if (card_detect & SDC_CARD_REMOVE_INT_REQ) { if (card_detect & SDC_CARD_REMOVE_INT_EN) { host->regs->card_detect = SDC_CARD_INSERT_INT_EN; mmc_detect_change(mmc, 0); } } if ((data_status = host->regs->dat_int_status) != 0) { host->regs->dat_int_enable = 0; host->regs->dat_int_status = 0; while (host->regs->software_reset != 0) {} if (host->data) { struct mmc_request * mrq = host->mrq; struct mmc_data * data = host->data; if (data_status == SDC_DAT_INT_STATUS_TRS) { data->bytes_xfered = data->blksz * data->blocks; } else { data->error = -EIO; if (data_status & SDC_DAT_INT_STATUS_CTE) data->error = -ETIME; } if (mrq->stop) sdc_send_cmd(host, mmc, mrq->stop, NULL); mmc_request_done(mmc, mrq); dma_unmap_sg(&host->pdev->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); host->data = NULL; host->mrq = NULL; } } spin_unlock_irqrestore(&host->lock, flags); return IRQ_HANDLED; } /*---------------------------------------------------------------------*/ static const struct mmc_host_ops axi_sdc_ops = { .request = sdc_request, .set_ios = sdc_set_ios, .get_cd = sdc_get_cd, .card_hw_reset = sdc_card_reset, }; static int axi_sdc_probe(struct platform_device * pdev) { struct device * dev = &pdev->dev; struct resource * iomem; struct sdc_host * host; struct mmc_host * mmc; void __iomem * ioaddr; uint32_t capability; int irq; int ret; iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0); ioaddr = devm_ioremap_resource(dev, iomem); if (IS_ERR(ioaddr)) return PTR_ERR(ioaddr); irq = platform_get_irq(pdev, 0); if (irq <= 0) return -ENXIO; mmc = mmc_alloc_host(sizeof(*host), dev); if (!mmc) return -ENOMEM; mmc->ops = &axi_sdc_ops; host = mmc_priv(mmc); host->pdev = pdev; host->regs = (struct sdc_regs __iomem *)ioaddr; host->irq = irq; ret = of_property_read_u32(dev->of_node, "clock", &host->clk_freq); if (ret) host->clk_freq = 100000000; ret = mmc_of_parse(mmc); if (ret) { mmc_free_host(mmc); return ret; } if (mmc->f_min == 0) mmc->f_min = host->clk_freq / 0x200; /* maximum clock division 256 * 2 */ if (mmc->f_max == 0) mmc->f_max = host->clk_freq / 2; /* minimum clock division 2 */ if ((mmc->caps2 & MMC_CAP2_NO_SDIO) == 0) { /* TODO: deprecated 10/19/2022, set in DTS */ mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED; mmc->caps2 |= MMC_CAP2_NO_SDIO; } mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; mmc->max_segs = 1; mmc->max_req_size = 0x2000000; mmc->max_seg_size = 0x2000000; mmc->max_blk_size = 0x1000; mmc->max_blk_count = 0x10000; ret = request_irq(host->irq, sdc_isr, IRQF_TRIGGER_HIGH, "fpga-axi-sdc", mmc); if (ret) { mmc_free_host(mmc); return ret; } host->dma_addr_bits = 32; capability = host->regs->capability; if (capability & SDC_CAPABILITY_ADDR) { host->dma_addr_bits = (capability & SDC_CAPABILITY_ADDR) >> __builtin_ctz(SDC_CAPABILITY_ADDR); ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(host->dma_addr_bits)); if (ret) { printk(KERN_ERR "AXI-SDC: Can't set DMA mask\n"); mmc_free_host(mmc); return ret; } } sdc_reset(mmc); ret = mmc_add_host(mmc); if (ret) { printk(KERN_ERR "AXI-SDC: Can't register device\n"); mmc_free_host(mmc); return ret; } //spin_lock_init(&host->lock); platform_set_drvdata(pdev, host); return 0; } static int axi_sdc_remove(struct platform_device * pdev) { struct sdc_host * host = platform_get_drvdata(pdev); struct mmc_host * mmc = mmc_from_priv(host); free_irq(host->irq, mmc); mmc_remove_host(mmc); mmc_free_host(mmc); return 0; } static struct platform_driver axi_sdc_driver = { .driver = { .name = "riscv-axi-sdc", .of_match_table = axi_sdc_of_match_table, }, .probe = axi_sdc_probe, .remove = axi_sdc_remove, }; module_platform_driver(axi_sdc_driver); MODULE_DESCRIPTION("AXI SD Card driver"); MODULE_AUTHOR("Eugene Tarassov"); MODULE_LICENSE("GPL v2");