/////////////////////////////////////////// // ahbapbbridge.sv // // Written: David_Harris@hmc.edu & Nic Lucio 7 June 2022 // // Purpose: AHB to APB bridge // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module ahbapbbridge #(PERIPHS = 2) ( input logic HCLK, HRESETn, input logic [PERIPHS-1:0] HSEL, input logic [31:0] HADDR, input logic [`XLEN-1:0] HWDATA, input logic HWRITE, input logic [1:0] HTRANS, input logic HREADY, output logic [`XLEN-1:0] HRDATA, output logic HRESP, HREADYOUT, output logic PCLK, PRESETn, output logic [PERIPHS-1:0] PSEL, output logic PWRITE, output logic PENABLE, output logic [31:0] PADDR, output logic [`XLEN-1:0] PWDATA, input logic [PERIPHS-1:0] PREADY, input var [`XLEN-1:0][PERIPHS-1:0] PRDATA ); logic activeTrans; logic initTrans, initTransSel, initTransSelD; logic nextPENABLE; // convert AHB to APB signals assign PCLK = HCLK; assign PRESETn = HRESETn; // identify start of a transaction assign activeTrans = (HTRANS == 2'b10); // only accept nonsequential transactions assign initTrans = activeTrans & HREADY; // start a transaction when the bus is ready and an active transaction is requested assign initTransSel = initTrans & |HSEL; // capture data and address if any of the peripherals are selected // delay AHB Address phase signals to align with AHB Data phase because APB expects them at the same time flopenr #(32) addrreg(HCLK, ~HRESETn, initTransSel, HADDR, PADDR); flopenr #(1) writereg(HCLK, ~HRESETn, initTransSel, HWRITE, PWRITE); // enable selreg with iniTrans rather than initTransSel so PSEL can turn off flopenr #(PERIPHS) selreg(HCLK, ~HRESETn, initTrans, HSEL & {PERIPHS{activeTrans}}, PSEL); // AHB Data phase signal doesn't need delay. Note that HWDATA is guaranteed to remain stable until READY is asserted assign PWDATA = HWDATA; // enable logic: goes high a cycle after initTrans, then back low on cycle after desired PREADY is asserted // cycle1: AHB puts HADDR, HWRITE, HSEL on bus. initTrans is 1, and these are captured // cycle2: AHB puts HWDATA on the bus. This effectively extends the setup phase // cycle3: bridge raises PENABLE. Peripheral typically responds with PREADY. // Read occurs by end of cycle. Write occurs at end of cycle. flopr #(1) inittransreg(HCLK, ~HRESETn, initTransSel, initTransSelD); assign nextPENABLE = PENABLE ? ~HREADY : initTransSelD; flopr #(1) enablereg(HCLK, ~HRESETn, nextPENABLE, PENABLE); // result and ready multiplexer int i; always_comb for (i=0; i