/////////////////////////////////////////// // srt.sv // // Written: David_Harris@hmc.edu 13 January 2022 // Modified: // // Purpose: Combined Divide and Square Root Floating Point and Integer Unit // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" `define DIVLEN ((`NF<(`XLEN)) ? (`XLEN) : `NF) module srtradix4 ( input logic clk, input logic Start, input logic Stall, // *** multiple pipe stages input logic Flush, // *** multiple pipe stages // Floating Point Inputs // later add exponents, signs, special cases input logic XSign, YSign, input logic [`NE-1:0] XExp, YExp, input logic [`NF-1:0] XFrac, YFrac, input logic [`XLEN-1:0] SrcA, SrcB, input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit input logic W64, // 32-bit ints on XLEN=64 input logic Signed, // Interpret integers as signed 2's complement input logic Int, // Choose integer inputs input logic Sqrt, // perform square root, not divide output logic rsign, output logic [`DIVLEN-1:0] Quot, Rem, // *** later handle integers output logic [`NE-1:0] rExp, output logic [3:0] Flags ); // logic qp, qz, qm; // quotient is +1, 0, or -1 logic [3:0] q; logic [`NE-1:0] calcExp; logic calcSign; logic [`DIVLEN-1:0] X, Dpreproc; logic [`DIVLEN+3:0] WS, WSA, WSN; logic [`DIVLEN+3:0] WC, WCA, WCN; logic [`DIVLEN+3:0] D, DBar, D2, DBar2, Dsel; logic [$clog2(`XLEN+1)-1:0] intExp; logic intSign; srtpreproc preproc(SrcA, SrcB, XFrac, YFrac, Fmt, W64, Signed, Int, Sqrt, X, Dpreproc, intExp, intSign); // Top Muxes and Registers // When start is asserted, the inputs are loaded into the divider. // Otherwise, the divisor is retained and the partial remainder // is fed back for the next iteration. // - assumed one is added here since all numbers are normlaized // *** wait what about zero? is that specal case? can the divider handle it? // - when the start signal is asserted X and 0 are loaded into WS and WC // - otherwise load WSA into the flipflop // *** what does N and A stand for? // *** change shift amount for radix4 mux2 #(`DIVLEN+4) wsmux({WSA[`DIVLEN+1:0], 2'b0}, {4'b0001, X}, Start, WSN); flop #(`DIVLEN+4) wsflop(clk, WSN, WS); mux2 #(`DIVLEN+4) wcmux({WCA[`DIVLEN+1:0], 2'b0}, {`DIVLEN+4{1'b0}}, Start, WCN); flop #(`DIVLEN+4) wcflop(clk, WCN, WC); flopen #(`DIVLEN+4) dflop(clk, Start, {4'b0001, Dpreproc}, D); // Quotient Selection logic // Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm) // *** change this for radix 4 - generate w/ stine code // q encoding: // 1000 = +2 // 0100 = +1 // 0000 = 0 // 0010 = -1 // 0001 = -2 qsel4 qsel4(.D, .WS, .WC, .q); // Store the expoenent and sign until division is done flopen #(`NE) expflop(clk, Start, calcExp, rExp); flopen #(1) signflop(clk, Start, calcSign, rsign); // Divisor Selection logic // *** radix 4 change to choose -2 to 2 // - choose the negitive version of what's being selected assign DBar = ~D; assign DBar2 = {~D[`DIVLEN+2:0], 1'b1}; assign D2 = {D[`DIVLEN+2:0], 1'b0}; always_comb case (q) 4'b1000: Dsel = DBar2; 4'b0100: Dsel = DBar; 4'b0000: Dsel = {(`DIVLEN+4){1'b0}}; 4'b0010: Dsel = D; 4'b0001: Dsel = D2; default: Dsel = {`DIVLEN+4{1'bx}}; endcase // Partial Product Generation // WSA, WCA = WS + WC - qD csa #(`DIVLEN+4) csa(WS, WC, Dsel, |q[3:2], WSA, WCA); //*** change for radix 4 otfc4 #(`DIVLEN) otfc4(clk, Start, q, Quot); expcalc expcalc(.XExp, .YExp, .calcExp); signcalc signcalc(.XSign, .YSign, .calcSign); endmodule //////////////// // Submodules // //////////////// /////////////////// // Preprocessing // /////////////////// module srtpreproc ( input logic [`XLEN-1:0] SrcA, SrcB, input logic [`NF-1:0] XFrac, YFrac, input logic [1:0] Fmt, // Floats: 00 = 16 bit, 01 = 32 bit, 10 = 64 bit, 11 = 128 bit input logic W64, // 32-bit ints on XLEN=64 input logic Signed, // Interpret integers as signed 2's complement input logic Int, // Choose integer inputs input logic Sqrt, // perform square root, not divide output logic [`DIVLEN-1:0] X, D, output logic [$clog2(`XLEN+1)-1:0] intExp, // Quotient integer exponent output logic intSign // Quotient integer sign ); logic [$clog2(`XLEN+1)-1:0] zeroCntA, zeroCntB; logic [`XLEN-1:0] PosA, PosB; logic [`DIVLEN-1:0] ExtraA, ExtraB, PreprocA, PreprocB, PreprocX, PreprocY; assign PosA = (Signed & SrcA[`XLEN - 1]) ? -SrcA : SrcA; assign PosB = (Signed & SrcB[`XLEN - 1]) ? -SrcB : SrcB; lzc #(`XLEN) lzcA (PosA, zeroCntA); lzc #(`XLEN) lzcB (PosB, zeroCntB); assign ExtraA = {PosA, {`DIVLEN-`XLEN{1'b0}}}; assign ExtraB = {PosB, {`DIVLEN-`XLEN{1'b0}}}; assign PreprocA = ExtraA << zeroCntA; assign PreprocB = ExtraB << (zeroCntB + 1); assign PreprocX = {XFrac, {`DIVLEN-`NF{1'b0}}}; assign PreprocY = {YFrac, {`DIVLEN-`NF{1'b0}}}; assign X = Int ? PreprocA : PreprocX; assign D = Int ? PreprocB : PreprocY; assign intExp = zeroCntB - zeroCntA + 1; assign intSign = Signed & (SrcA[`XLEN - 1] ^ SrcB[`XLEN - 1]); endmodule ///////////////////////////////// // Quotient Selection, Radix 2 // ///////////////////////////////// module qsel2 ( // *** eventually just change to 4 bits input logic [`DIVLEN+3:`DIVLEN] ps, pc, output logic qp, qz, qm ); logic [`DIVLEN+3:`DIVLEN] p, g; logic magnitude, sign, cout; // The quotient selection logic is presented for simplicity, not // for efficiency. You can probably optimize your logic to // select the proper divisor with less delay. // Quotient equations from EE371 lecture notes 13-20 assign p = ps ^ pc; assign g = ps & pc; assign #1 magnitude = ~(&p[`DIVLEN+2:`DIVLEN]); assign #1 cout = g[`DIVLEN+2] | (p[`DIVLEN+2] & (g[`DIVLEN+1] | p[`DIVLEN+1] & g[`DIVLEN])); assign #1 sign = p[`DIVLEN+3] ^ cout; /* assign #1 magnitude = ~((ps[54]^pc[54]) & (ps[53]^pc[53]) & (ps[52]^pc[52])); assign #1 sign = (ps[55]^pc[55])^ (ps[54] & pc[54] | ((ps[54]^pc[54]) & (ps[53]&pc[53] | ((ps[53]^pc[53]) & (ps[52]&pc[52]))))); */ // Produce quotient = +1, 0, or -1 assign #1 qp = magnitude & ~sign; assign #1 qz = ~magnitude; assign #1 qm = magnitude & sign; endmodule /////////////////////////////////// // On-The-Fly Converter, Radix 2 // /////////////////////////////////// module otfc4 #(parameter N=65) ( input logic clk, input logic Start, input logic [3:0] q, output logic [N-1:0] r ); // The on-the-fly converter transfers the quotient // bits to the quotient as they come. // // This code follows the psuedocode presented in the // floating point chapter of the book. Right now, // it is written for Radix-2 division. // // QM is Q-1. It allows us to write negative bits // without using a costly CPA. logic [N+2:0] Q, QM, QNext, QMNext, QMux, QMMux; // QR and QMR are the shifted versions of Q and QM. // They are treated as [N-1:r] size signals, and // discard the r most significant bits of Q and QM. logic [N:0] QR, QMR; // if starting a new divison set Q to 0 and QM to -1 mux2 #(N+3) Qmux(QNext, {N+3{1'b0}}, Start, QMux); mux2 #(N+3) QMmux(QMNext, {N+3{1'b1}}, Start, QMMux); flop #(N+3) Qreg(clk, QMux, Q); flop #(N+3) QMreg(clk, QMMux, QM); // shift Q (quotent) and QM (quotent-1) // if q = 2 Q = {Q, 10} QM = {Q, 01} // else if q = 1 Q = {Q, 01} QM = {Q, 00} // else if q = 0 Q = {Q, 00} QM = {QM, 11} // else if q = -1 Q = {QM, 11} QM = {QM, 10} // else if q = -2 Q = {QM, 10} QM = {QM, 01} // *** how does the 0 concatination numbers work? always_comb begin QR = Q[N:0]; QMR = QM[N:0]; // Shift Q and QM if (q[3]) begin // +2 QNext = {QR, 2'b10}; QMNext = {QR, 2'b01}; end else if (q[2]) begin // +1 QNext = {QR, 2'b01}; QMNext = {QR, 2'b00}; end else if (q[1]) begin // -1 QNext = {QMR, 2'b11}; QMNext = {QMR, 2'b10}; end else if (q[0]) begin // -2 QNext = {QMR, 2'b10}; QMNext = {QMR, 2'b01}; end else begin // 0 QNext = {QR, 2'b00}; QMNext = {QMR, 2'b11}; end end assign r = Q[N+2] ? Q[N+1:2] : Q[N:1]; endmodule ///////// // csa // ///////// module csa #(parameter N=69) ( input logic [N-1:0] in1, in2, in3, input logic cin, output logic [N-1:0] out1, out2 ); // This block adds in1, in2, in3, and cin to produce // a result out1 / out2 in carry-save redundant form. // cin is just added to the least significant bit and // is required to handle adding a negative divisor. // Fortunately, the carry (out2) is shifted left by one // bit, leaving room in the least significant bit to // insert cin. assign #1 out1 = in1 ^ in2 ^ in3; assign #1 out2 = {in1[N-2:0] & (in2[N-2:0] | in3[N-2:0]) | (in2[N-2:0] & in3[N-2:0]), cin}; endmodule ////////////// // expcalc // ////////////// module expcalc( input logic [`NE-1:0] XExp, YExp, output logic [`NE-1:0] calcExp ); assign calcExp = XExp - YExp + (`NE)'(`BIAS); endmodule ////////////// // signcalc // ////////////// module signcalc( input logic XSign, YSign, output logic calcSign ); assign calcSign = XSign ^ YSign; endmodule