/////////////////////////////////////////// // 1 port sram. // // Written: ross1728@gmail.com May 3, 2021 // Basic sram with 1 read write port. // When clk rises Addr and LineWriteData are sampled. // Following the clk edge read data is output from the sampled Addr. // Write // // Purpose: Storage and read/write access to data cache data, tag valid, dirty, and replacement. // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // MIT LICENSE // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE // OR OTHER DEALINGS IN THE SOFTWARE. //////////////////////////////////////////////////////////////////////////////////////////////// // WIDTH is number of bits in one "word" of the memory, DEPTH is number of such words `include "wally-config.vh" module ram1p1rwbe #(parameter DEPTH=128, WIDTH=256) ( input logic clk, input logic ce, input logic [$clog2(DEPTH)-1:0] addr, input logic [WIDTH-1:0] din, input logic we, input logic [(WIDTH-1)/8:0] bwe, output logic [WIDTH-1:0] dout); logic [WIDTH-1:0] RAM[DEPTH-1:0]; // *************************************************************************** // TRUE SRAM macro // *************************************************************************** if (`USE_SRAM == 1) begin genvar index; // 64 x 128-bit SRAM // check if the size is ok, complain if not*** logic [WIDTH-1:0] BitWriteMask; for (index=0; index < WIDTH; index++) assign BitWriteMask[index] = bwe[index/8]; TS1N28HPCPSVTB64X128M4SW sram( .CLK(clk), .CEB(~ce), .WEB(~we), .A(addr), .D(din), .BWEB(~BitWriteMask), .Q(dout)); // *************************************************************************** // READ first SRAM model // *************************************************************************** end else begin: ram integer i; // Read always @(posedge clk) if(ce) dout <= #1 RAM[addr]; // Write divided into part for bytes and part for extra msbs if(WIDTH >= 8) always @(posedge clk) if (ce & we) for(i = 0; i < WIDTH/8; i++) if(bwe[i]) RAM[addr][i*8 +: 8] <= #1 din[i*8 +: 8]; if (WIDTH%8 != 0) // handle msbs if width not a multiple of 8 always @(posedge clk) if (ce & we & bwe[WIDTH/8]) RAM[addr][WIDTH-1:WIDTH-WIDTH%8] <= #1 din[WIDTH-1:WIDTH-WIDTH%8]; end endmodule