/////////////////////////////////////////// // gpio_apb.sv // // Written: David_Harris@hmc.edu 14 January 2021 // Modified: bbracker@hmc.edu 15 Apr. 2021 // // Purpose: General Purpose I/O peripheral // See FE310-G002-Manual-v19p05 for specifications // No interrupts, drive strength, or pull-ups supported // // Documentation: RISC-V System on Chip Design Chapter 15 // // A component of the CORE-V-WALLY configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// module gpio_apb import cvw::*; #(parameter cvw_t P) ( input logic PCLK, PRESETn, input logic PSEL, input logic [7:0] PADDR, input logic [P.XLEN-1:0] PWDATA, input logic [P.XLEN/8-1:0] PSTRB, input logic PWRITE, input logic PENABLE, output logic [P.XLEN-1:0] PRDATA, output logic PREADY, input logic [31:0] iof0, iof1, input logic [31:0] GPIOIN, output logic [31:0] GPIOOUT, GPIOEN, output logic GPIOIntr ); logic [31:0] input0d, input1d, input2d, input3d; logic [31:0] input_val, input_en, output_en, output_val; logic [31:0] rise_ie, rise_ip, fall_ie, fall_ip, high_ie, high_ip, low_ie, low_ip; logic [31:0] out_xor, iof_en, iof_sel, iof_out, gpio_out; logic [7:0] entry; logic [31:0] Din, Dout; logic memwrite; // APB I/O assign entry = {PADDR[7:2],2'b00}; // 32-bit word-aligned accesses assign memwrite = PWRITE & PENABLE & PSEL; // only write in access phase assign PREADY = 1'b1; // GPIO never takes >1 cycle to respond // account for subword read/write circuitry // -- Note GPIO registers are 32 bits no matter what; access them with LW SW. // (At least that's what I think when FE310 spec says "only naturally aligned 32-bit accesses are supported") if (P.XLEN == 64) begin assign Din = entry[2] ? PWDATA[63:32] : PWDATA[31:0]; assign PRDATA = entry[2] ? {Dout,32'b0} : {32'b0,Dout}; end else begin // 32-bit assign Din = PWDATA[31:0]; assign PRDATA = Dout; end // register access always_ff @(posedge PCLK, negedge PRESETn) if (~PRESETn) begin // asynch reset input_en <= 0; output_en <= 0; // *** synch reset not yet implemented [DH: can we delete this comment? Check if a sync reset is required] output_val <= #1 0; rise_ie <= #1 0; rise_ip <= #1 0; fall_ie <= #1 0; fall_ip <= #1 0; high_ie <= #1 0; high_ip <= #1 0; low_ie <= #1 0; low_ip <= #1 0; iof_en <= #1 0; iof_sel <= #1 0; out_xor <= #1 0; end else begin // writes // According to FE310 spec: Once the interrupt is pending, it will remain set until a 1 is written to the *_ip register at that bit. /* verilator lint_off CASEINCOMPLETE */ if (memwrite) case(entry) 8'h04: input_en <= #1 Din; 8'h08: output_en <= #1 Din; 8'h0C: output_val <= #1 Din; 8'h18: rise_ie <= #1 Din; 8'h20: fall_ie <= #1 Din; 8'h28: high_ie <= #1 Din; 8'h30: low_ie <= #1 Din; 8'h38: iof_en <= #1 Din; 8'h3C: iof_sel <= #1 Din; 8'h40: out_xor <= #1 Din; endcase /* verilator lint_on CASEINCOMPLETE */ // interrupts can be cleared by writing corresponding bits to a register if (memwrite & entry == 8'h1C) rise_ip <= rise_ip & ~Din; else rise_ip <= rise_ip | (input2d & ~input3d); if (memwrite & (entry == 8'h24)) fall_ip <= fall_ip & ~Din; else fall_ip <= fall_ip | (~input2d & input3d); if (memwrite & (entry == 8'h2C)) high_ip <= high_ip & ~Din; else high_ip <= high_ip | input3d; if (memwrite & (entry == 8'h34)) low_ip <= low_ip & ~Din; else low_ip <= low_ip | ~input3d; case(entry) // flop to sample inputs 8'h00: Dout <= #1 input_val; 8'h04: Dout <= #1 input_en; 8'h08: Dout <= #1 output_en; 8'h0C: Dout <= #1 output_val; 8'h18: Dout <= #1 rise_ie; 8'h1C: Dout <= #1 rise_ip; 8'h20: Dout <= #1 fall_ie; 8'h24: Dout <= #1 fall_ip; 8'h28: Dout <= #1 high_ie; 8'h2C: Dout <= #1 high_ip; 8'h30: Dout <= #1 low_ie; 8'h34: Dout <= #1 low_ip; 8'h38: Dout <= #1 iof_en; 8'h3C: Dout <= #1 iof_sel; 8'h40: Dout <= #1 out_xor; default: Dout <= #1 0; endcase end // chip i/o // connect OUT to IN for loopback testing if (P.GPIO_LOOPBACK_TEST) assign input0d = ((output_en & GPIOOUT) | (~output_en & GPIOIN)) & input_en; else assign input0d = GPIOIN & input_en; // synchroninzer for inputs flop #(32) sync1(PCLK,input0d,input1d); flop #(32) sync2(PCLK,input1d,input2d); flop #(32) sync3(PCLK,input2d,input3d); assign input_val = input3d; assign iof_out = iof_sel & iof1 | ~iof_sel & iof0; // per-bit mux between iof1 and iof0 assign gpio_out = iof_en & iof_out | ~iof_en & output_val; // per-bit mux between IOF and output_val assign GPIOOUT = gpio_out ^ out_xor; // per-bit flip output polarity assign GPIOEN = output_en; assign GPIOIntr = |{(rise_ip & rise_ie),(fall_ip & fall_ie),(high_ip & high_ie),(low_ip & low_ie)}; endmodule