/////////////////////////////////////////// // hptw.sv // // Written: tfleming@hmc.edu 2 March 2021 // Modified: david_harris@hmc.edu 18 July 2021 cleanup and simplification // kmacsaigoren@hmc.edu 1 June 2021 // implemented SV48 on top of SV39. This included, adding a level of the FSM for the extra page number segment // adding support for terapage encoding, and for setting the HPTWAdr using the new level, // adding the internal SvMode signal // // Purpose: Page Table Walker // Part of the Memory Management Unit (MMU) // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT // OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /////////////////////////////////////////// `include "wally-config.vh" `define HTPW_DA_WRITES_SUPPORTED 1 module hptw ( input logic clk, reset, input logic [`XLEN-1:0] SATP_REGW, // includes SATP.MODE to determine number of levels in page table input logic [`XLEN-1:0] PCF, IEUAdrM, // addresses to translate input logic [1:0] MemRWM, AtomicM, // system status input logic STATUS_MXR, STATUS_SUM, STATUS_MPRV, input logic [1:0] STATUS_MPP, input logic [1:0] PrivilegeModeW, (* mark_debug = "true" *) input logic ITLBMissF, DTLBMissM, // TLB Miss input logic [`XLEN-1:0] HPTWReadPTE, // page table entry from LSU input logic DCacheStallM, // stall from LSU output logic [`XLEN-1:0] PTE, // page table entry to TLBs output logic [1:0] PageType, // page type to TLBs (* mark_debug = "true" *) output logic ITLBWriteF, DTLBWriteM, // write TLB with new entry output logic [`PA_BITS-1:0] HPTWAdr, output logic HPTWRead, // HPTW requesting to read memory output logic HPTWWrite, output logic [2:0] HPTWSize // 32 or 64 bit access. ); typedef enum logic [3:0] {L0_ADR, L0_RD, L1_ADR, L1_RD, L2_ADR, L2_RD, L3_ADR, L3_RD, LEAF, IDLE, UPDATE_PTE} statetype; logic DTLBWalk; // register TLBs translation miss requests logic [`PPN_BITS-1:0] BasePageTablePPN; logic [`PPN_BITS-1:0] CurrentPPN; logic MemWrite; logic Executable, Writable, Readable, Valid, PTE_U; logic Misaligned, MegapageMisaligned; logic ValidPTE, LeafPTE, ValidLeafPTE, ValidNonLeafPTE; logic StartWalk; logic TLBMiss; logic PRegEn; logic [1:0] NextPageType; logic [`SVMODE_BITS-1:0] SvMode; logic [`XLEN-1:0] TranslationVAdr; logic Dirty, Accessed; logic [`XLEN-1:0] NextPTE; logic UpdatePTE; logic SetDirty; logic DAPageFault; logic SaveHPTWAdr, SelHPTWWriteAdr; logic [`PA_BITS-1:0] HPTWWriteAdr, HPTWReadAdr; logic SV39Mode; logic ReadAccess, WriteAccess; logic InvalidRead, InvalidWrite; logic UpperBitsUnequalPageFault; logic ImproperPrivilege; logic [1:0] EffectivePrivilegeMode; logic OtherPageFault; (* mark_debug = "true" *) statetype WalkerState, NextWalkerState, InitialWalkerState; // Extract bits from CSRs and inputs assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS]; assign BasePageTablePPN = SATP_REGW[`PPN_BITS-1:0]; assign TLBMiss = (DTLBMissM | ITLBMissF); // Determine which address to translate assign TranslationVAdr = DTLBWalk ? IEUAdrM : PCF; assign CurrentPPN = PTE[`PPN_BITS+9:10]; // State flops flopenr #(1) TLBMissMReg(clk, reset, StartWalk, DTLBMissM, DTLBWalk); // when walk begins, record whether it was for DTLB (or record 0 for ITLB) assign PRegEn = HPTWRead & ~DCacheStallM; assign NextPTE = UpdatePTE ? {PTE[`XLEN-1:8], (SetDirty | PTE[7]), 1'b1, PTE[5:0]} : HPTWReadPTE; flopenr #(`XLEN) PTEReg(clk, reset, PRegEn | UpdatePTE, NextPTE, PTE); // Capture page table entry from data cache flopenr #(`PA_BITS) HPTWAdrWriteReg(clk, reset, SaveHPTWAdr, HPTWReadAdr, HPTWWriteAdr); assign SaveHPTWAdr = WalkerState == L0_ADR; assign SelHPTWWriteAdr = UpdatePTE | HPTWWrite; mux2 #(`PA_BITS) HPTWWriteAdrMux(HPTWReadAdr, HPTWWriteAdr, SelHPTWWriteAdr, HPTWAdr); // Assign PTE descriptors common across all XLEN values // For non-leaf PTEs, D, A, U bits are reserved and ignored. They do not cause faults while walking the page table assign {PTE_U, Executable, Writable, Readable, Valid} = PTE[4:0]; assign {Dirty, Accessed} = PTE[7:6]; assign LeafPTE = Executable | Writable | Readable; assign ValidPTE = Valid & ~(Writable & ~Readable); assign ValidLeafPTE = ValidPTE & LeafPTE; assign ValidNonLeafPTE = ValidPTE & ~LeafPTE; assign WriteAccess = (MemRWM[0] | |AtomicM); assign SetDirty = ~Dirty & & DTLBWalk & WriteAccess; assign ReadAccess = MemRWM[1]; assign EffectivePrivilegeMode = (DTLBWalk == 0) ? PrivilegeModeW : (STATUS_MPRV ? STATUS_MPP : PrivilegeModeW); // DTLB uses MPP mode when MPRV is 1 assign ImproperPrivilege = ((EffectivePrivilegeMode == `U_MODE) & ~PTE_U) | ((EffectivePrivilegeMode == `S_MODE) & PTE_U & (~STATUS_SUM & DTLBWalk)); if (`XLEN==64) begin:rv64 assign SV39Mode = (SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS] == `SV39); // page fault if upper bits aren't all the same logic UpperEqual39, UpperEqual48; assign UpperEqual39 = &(TranslationVAdr[63:38]) | ~|(TranslationVAdr[63:38]); assign UpperEqual48 = &(TranslationVAdr[63:47]) | ~|(TranslationVAdr[63:47]); assign UpperBitsUnequalPageFault = SV39Mode ? ~UpperEqual39 : ~UpperEqual48; end else begin assign SV39Mode = 0; assign UpperBitsUnequalPageFault = 0; end assign InvalidRead = ReadAccess & ~Readable & (~STATUS_MXR | ~Executable); assign InvalidWrite = WriteAccess & ~Writable; assign OtherPageFault = DTLBWalk? ImproperPrivilege | InvalidRead | InvalidWrite | UpperBitsUnequalPageFault | Misaligned | ~Valid : ImproperPrivilege | ~Executable | UpperBitsUnequalPageFault | Misaligned | ~Valid; assign DAPageFault = ValidLeafPTE & (~Accessed | SetDirty) & ~OtherPageFault; // Enable and select signals based on states assign StartWalk = (WalkerState == IDLE) & TLBMiss; assign HPTWRead = (WalkerState == L3_RD) | (WalkerState == L2_RD) | (WalkerState == L1_RD) | (WalkerState == L0_RD); assign DTLBWriteM = (WalkerState == LEAF & ~DAPageFault) & DTLBWalk; assign ITLBWriteF = (WalkerState == LEAF & ~DAPageFault) & ~DTLBWalk; assign HPTWWrite = (WalkerState == UPDATE_PTE); assign UpdatePTE = WalkerState == LEAF & DAPageFault; // FSM to track PageType based on the levels of the page table traversed flopr #(2) PageTypeReg(clk, reset, NextPageType, PageType); always_comb case (WalkerState) L3_RD: NextPageType = 2'b11; // terapage L2_RD: NextPageType = 2'b10; // gigapage L1_RD: NextPageType = 2'b01; // megapage L0_RD: NextPageType = 2'b00; // kilopage default: NextPageType = PageType; endcase // HPTWAdr muxing if (`XLEN==32) begin // RV32 logic [9:0] VPN; logic [`PPN_BITS-1:0] PPN; assign VPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? TranslationVAdr[31:22] : TranslationVAdr[21:12]; // select VPN field based on HPTW state assign PPN = ((WalkerState == L1_ADR) | (WalkerState == L1_RD)) ? BasePageTablePPN : CurrentPPN; assign HPTWReadAdr = {PPN, VPN, 2'b00}; assign HPTWSize = 3'b010; end else begin // RV64 logic [8:0] VPN; logic [`PPN_BITS-1:0] PPN; always_comb case (WalkerState) // select VPN field based on HPTW state L3_ADR, L3_RD: VPN = TranslationVAdr[47:39]; L2_ADR, L2_RD: VPN = TranslationVAdr[38:30]; L1_ADR, L1_RD: VPN = TranslationVAdr[29:21]; default: VPN = TranslationVAdr[20:12]; endcase assign PPN = ((WalkerState == L3_ADR) | (WalkerState == L3_RD) | (SvMode != `SV48 & ((WalkerState == L2_ADR) | (WalkerState == L2_RD)))) ? BasePageTablePPN : CurrentPPN; assign HPTWReadAdr = {PPN, VPN, 3'b000}; assign HPTWSize = 3'b011; end // Initial state and misalignment for RV32/64 if (`XLEN == 32) begin assign InitialWalkerState = L1_ADR; assign MegapageMisaligned = |(CurrentPPN[9:0]); // must have zero PPN0 // *** Possible bug - should be L1_ADR? assign Misaligned = ((WalkerState == L0_ADR) & MegapageMisaligned); end else begin logic GigapageMisaligned, TerapageMisaligned; assign InitialWalkerState = (SvMode == `SV48) ? L3_ADR : L2_ADR; assign TerapageMisaligned = |(CurrentPPN[26:0]); // must have zero PPN2, PPN1, PPN0 assign GigapageMisaligned = |(CurrentPPN[17:0]); // must have zero PPN1 and PPN0 assign MegapageMisaligned = |(CurrentPPN[8:0]); // must have zero PPN0 assign Misaligned = ((WalkerState == L2_ADR) & TerapageMisaligned) | ((WalkerState == L1_ADR) & GigapageMisaligned) | ((WalkerState == L0_ADR) & MegapageMisaligned); end // Page Table Walker FSM // If the setup time on the D$ RAM is short, it should be possible to merge the LEVELx_READ and LEVELx states // to decrease the latency of the HPTW. However, if the D$ is a cycle limiter, it's better to leave the // HPTW as shown below to keep the D$ setup time out of the critical path. // *** Is this really true. Talk with Ross. Seems like it's the next state logic on critical path instead. // *** address TYPE(statetype) flopenl #(.TYPE(statetype)) WalkerStateReg(clk, reset, 1'b1, NextWalkerState, IDLE, WalkerState); always_comb case (WalkerState) IDLE: if (TLBMiss) NextWalkerState = InitialWalkerState; else NextWalkerState = IDLE; L3_ADR: NextWalkerState = L3_RD; // first access in SV48 L3_RD: if (DCacheStallM) NextWalkerState = L3_RD; else NextWalkerState = L2_ADR; L2_ADR: if (InitialWalkerState == L2_ADR) NextWalkerState = L2_RD; // first access in SV39 else if (ValidLeafPTE & ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages else if (ValidNonLeafPTE) NextWalkerState = L2_RD; else NextWalkerState = LEAF; L2_RD: if (DCacheStallM) NextWalkerState = L2_RD; else NextWalkerState = L1_ADR; L1_ADR: if (InitialWalkerState == L1_ADR) NextWalkerState = L1_RD; // first access in SV32 else if (ValidLeafPTE & ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages else if (ValidNonLeafPTE) NextWalkerState = L1_RD; else NextWalkerState = LEAF; L1_RD: if (DCacheStallM) NextWalkerState = L1_RD; else NextWalkerState = L0_ADR; L0_ADR: if (ValidLeafPTE & ~Misaligned) NextWalkerState = LEAF; // could shortcut this by a cyle for all Lx_ADR superpages else if (ValidNonLeafPTE) NextWalkerState = L0_RD; else NextWalkerState = LEAF; L0_RD: if (DCacheStallM) NextWalkerState = L0_RD; else NextWalkerState = LEAF; LEAF: if (DAPageFault) NextWalkerState = UPDATE_PTE; else NextWalkerState = IDLE; // *** TODO update PTE with dirty/access. write to TLB and update memory. // probably want to write the PTE in UPDATE_PTE then go to leaf and update TLB. UPDATE_PTE: if(DCacheStallM) NextWalkerState = UPDATE_PTE; else NextWalkerState = LEAF; default: begin // synthesis translate_off if (WalkerState !== 'x) $error("Default state in HPTW should be unreachable; was %d", WalkerState); // synthesis translate_on NextWalkerState = IDLE; // should never be reached end endcase endmodule