/////////////////////////////////////////// // mdu.sv // // Written: David_Harris@hmc.edu 9 January 2021 // Modified: // // Purpose: M extension multiply and divide // // Documentation: RISC-V System on Chip Design Chapter 12 (Figure 12.21) // // A component of the CORE-V-WALLY configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// module mdu import cvw::*; #(parameter cvw_t P) ( input logic clk, reset, input logic StallM, StallW, input logic FlushE, FlushM, FlushW, input logic [P.XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE, // inputs A and B from IEU forwarding mux output input logic [2:0] Funct3E, Funct3M, // type of MDU operation input logic IntDivE, W64E, // Integer division/remainder, and W-type instrutions input logic MDUActiveE, // Mul/Div instruction being executed output logic [P.XLEN-1:0] MDUResultW, // multiply/divide result output logic DivBusyE // busy signal to stall pipeline in Execute stage ); logic [P.XLEN*2-1:0] ProdM; // double-width product from mul logic [P.XLEN-1:0] QuotM, RemM; // quotient and remainder from intdivrestoring logic [P.XLEN-1:0] PrelimResultM; // selected result before W truncation logic [P.XLEN-1:0] MDUResultM; // result after W truncation logic W64M; // W-type instruction logic [P.XLEN-1:0] AMDU, BMDU; // Gated inputs to MDU // gate data inputs to MDU to only operate when MDU is active. assign AMDU = ForwardedSrcAE & {P.XLEN{MDUActiveE}}; assign BMDU = ForwardedSrcBE & {P.XLEN{MDUActiveE}}; // Multiplier mul #(P.XLEN) mul(.clk, .reset, .StallM, .FlushM, .ForwardedSrcAE, .ForwardedSrcBE, .Funct3E, .ProdM); // Divider // Start a divide when a new division instruction is received and the divider isn't already busy or finishing // When IDIV_ON_FPU is set, use the FPU divider instead // In ZMMUL, with M_SUPPORTED = 0, omit the divider if ((P.IDIV_ON_FPU) || (!P.M_SUPPORTED)) begin:nodiv assign QuotM = 0; assign RemM = 0; assign DivBusyE = 0; end else begin:div div #(P) div(.clk, .reset, .StallM, .FlushE, .DivSignedE(~Funct3E[0]), .W64E, .IntDivE, .ForwardedSrcAE, .ForwardedSrcBE, .DivBusyE, .QuotM, .RemM); end // Result multiplexer // For ZMMUL, QuotM and RemM are tied to 0, so the mux automatically simplifies always_comb case (Funct3M) 3'b000: PrelimResultM = ProdM[P.XLEN-1:0]; // mul 3'b001: PrelimResultM = ProdM[P.XLEN*2-1:P.XLEN]; // mulh 3'b010: PrelimResultM = ProdM[P.XLEN*2-1:P.XLEN]; // mulhsu 3'b011: PrelimResultM = ProdM[P.XLEN*2-1:P.XLEN]; // mulhu 3'b100: PrelimResultM = QuotM; // div 3'b101: PrelimResultM = QuotM; // divu 3'b110: PrelimResultM = RemM; // rem 3'b111: PrelimResultM = RemM; // remu endcase // Handle sign extension for W-type instructions flopenrc #(1) W64MReg(clk, reset, FlushM, ~StallM, W64E, W64M); if (P.XLEN == 64) begin:resmux // RV64 has W-type instructions assign MDUResultM = W64M ? {{32{PrelimResultM[31]}}, PrelimResultM[31:0]} : PrelimResultM; end else begin:resmux // RV32 has no W-type instructions assign MDUResultM = PrelimResultM; end // Writeback stage pipeline register flopenrc #(P.XLEN) MDUResultWReg(clk, reset, FlushW, ~StallW, MDUResultM, MDUResultW); endmodule // mdu