#!/usr/bin/python3 # Madeleine Masser-Frye mmasserfrye@hmc.edu 5/22 from operator import index import scipy.optimize as opt import subprocess import csv import re from matplotlib.cbook import flatten import matplotlib.pyplot as plt import matplotlib.lines as lines import matplotlib.axes as axes import numpy as np from collections import namedtuple import sklearn.metrics as skm def synthsfromcsv(filename): Synth = namedtuple("Synth", "module tech width freq delay area lpower denergy") with open(filename, newline='') as csvfile: csvreader = csv.reader(csvfile) global allSynths allSynths = list(csvreader)[1:] for i in range(len(allSynths)): for j in range(len(allSynths[0])): try: allSynths[i][j] = int(allSynths[i][j]) except: try: allSynths[i][j] = float(allSynths[i][j]) except: pass allSynths[i] = Synth(*allSynths[i]) return allSynths def synthsintocsv(): ''' writes a CSV with one line for every available synthesis each line contains the module, tech, width, target freq, and resulting metrics ''' print("This takes a moment...") bashCommand = "find . -path '*runs/ppa*rv32e*' -prune" output = subprocess.check_output(['bash','-c', bashCommand]) allSynths = output.decode("utf-8").split('\n')[:-1] specReg = re.compile('[a-zA-Z0-9]+') metricReg = re.compile('-?\d+\.\d+[e]?[-+]?\d*') file = open("ppaData.csv", "w") writer = csv.writer(file) writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (fJ)']) for oneSynth in allSynths: module, width, risc, tech, freq = specReg.findall(oneSynth)[2:7] tech = tech[:-2] metrics = [] for phrase in [['Path Slack', 'qor'], ['Clk Period', 'qor'], ['Design Area', 'qor'], ['100', 'power']]: bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*' bashCommand = bashCommand.format(*phrase) try: output = subprocess.check_output(['bash','-c', bashCommand]) except: print(module + width + tech + freq + " doesn't have reports") print("Consider running cleanup() first") nums = metricReg.findall(str(output)) nums = [float(m) for m in nums] metrics += nums delay = metrics[1] - metrics[0] area = metrics[2] lpower = metrics[5] denergy = (metrics[3] + metrics[4])*delay*1000 # (switching + internal powers)*delay, more practical units for regression coefs if ('flop' in module): area = area/2 # since two flops in each module writer.writerow([module, tech, width, freq, delay, area, lpower, denergy]) file.close() def cleanup(): ''' removes runs that didn't work ''' bashCommand = 'grep -r "Error" runs/ppa*/reports/*qor*' try: output = subprocess.check_output(['bash','-c', bashCommand]) allSynths = output.decode("utf-8").split('\n')[:-1] for run in allSynths: run = run.split('MHz')[0] bc = 'rm -r '+ run + '*' output = subprocess.check_output(['bash','-c', bc]) except: pass bashCommand = "find . -path '*runs/ppa*rv32e*' -prune" output = subprocess.check_output(['bash','-c', bashCommand]) allSynths = output.decode("utf-8").split('\n')[:-1] for oneSynth in allSynths: for phrase in [['Path Length', 'qor'], ['Design Area', 'qor'], ['100', 'power']]: bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*' bashCommand = bashCommand.format(*phrase) try: output = subprocess.check_output(['bash','-c', bashCommand]) except: bc = 'rm -r '+ oneSynth[2:] try: output = subprocess.check_output(['bash','-c', bc]) except: pass print("All cleaned up!") def getVals(tech, module, var, freq=None): ''' for a specified tech, module, and variable/metric returns a list of values for that metric in ascending width order works at a specified target frequency or if none is given, uses the synthesis with the best achievable delay for each width ''' global widths metric = [] widthL = [] if (freq != None): for oneSynth in allSynths: if (oneSynth.freq == freq) & (oneSynth.tech == tech) & (oneSynth.module == module): widthL += [oneSynth.width] osdict = oneSynth._asdict() metric += [osdict[var]] metric = [x for _, x in sorted(zip(widthL, metric))] # ordering else: for w in widths: m = 100000 # large number to start for oneSynth in allSynths: if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == module): if (oneSynth.delay < m) & (1000/oneSynth.delay > oneSynth.freq): m = oneSynth.delay osdict = oneSynth._asdict() met = osdict[var] try: metric += [met] except: pass return metric def csvOfBest(): global techSpecs, widths, modules, allSynths bestSynths = [] for tech in [x.tech for x in techSpecs]: for mod in modules: for w in widths: m = 100000 # large number to start best = None for oneSynth in allSynths: if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == mod): if (oneSynth.delay < m) & (1000/oneSynth.delay > oneSynth.freq): m = oneSynth.delay best = oneSynth if (best != None) & (best not in bestSynths): bestSynths += [best] file = open("bestSynths.csv", "w") writer = csv.writer(file) writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (fJ)']) for synth in bestSynths: writer.writerow(list(synth)) file.close() def genLegend(fits, coefs, r2, spec): ''' generates a list of two legend elements labels line with fit equation and dots with tech and r squared of the fit ''' coefsr = [str(round(c, 3)) for c in coefs] eq = '' ind = 0 eqDict = {'c': '', 'l': 'N', 's': '$N^2$', 'g': '$log_2$(N)', 'n': 'N$log_2$(N)'} for k in eqDict.keys(): if k in fits: if str(coefsr[ind]) != '0.0': eq += " + " + coefsr[ind] + eqDict[k] ind += 1 eq = eq[3:] legend_elements = [lines.Line2D([0], [0], color=spec.color, label=eq)] if spec.shape: legend_elements += [lines.Line2D([0], [0], color=spec.color, ls='', marker=spec.shape, label=spec.tech +' $R^2$='+ str(round(r2, 4)))] return legend_elements def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn', norm=True, color=None): ''' module: string module name freq: int freq (MHz) var: string delay, area, lpower, or denergy fits: constant, linear, square, log2, Nlog2 plots given variable vs width for all matching syntheses with regression ''' if ax is None: singlePlot = True ax = plt.gca() else: singlePlot = False fullLeg = [] global techSpecs global widths global norms allWidths = [] allMetrics = [] for spec in techSpecs: metric = getVals(spec.tech, module, var, freq=freq) if norm: techdict = spec._asdict() norm = techdict[var] metric = [m/norm for m in metric] # comment out to not normalize if len(metric) == 5: allWidths += widths allMetrics += metric xp, pred, leg = regress(widths, metric, spec, fits) fullLeg += leg c = color if color else spec.color ax.scatter(widths, metric, color=c, marker=spec.shape) ax.plot(xp, pred, color=c) combined = TechSpec('combined', 'red', 0, 0, 0, 0, 0) xp, pred, leg = regress(allWidths, allMetrics, combined, fits) fullLeg += leg ax.plot(xp, pred, color='red') ax.legend(handles=fullLeg) ax.set_xticks(widths) ax.set_xlabel("Width (bits)") if norm: ylabeldic = {"lpower": "Leakage Power (add32)", "denergy": "Energy/Op (add32)", "area": "Area (add32)", "delay": "Delay (FO4)"} else: ylabeldic = {"lpower": "Leakage Power (nW)", "denergy": "Dynamic Energy (fJ)", "area": "Area (sq microns)", "delay": "Delay (ns)"} ax.set_ylabel(ylabeldic[var]) if singlePlot: titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best achievable delay)" ax.set_title(module + titleStr) plt.savefig('./plots/PPA/'+ module + '_' + var + '.png') plt.show() def regress(widths, var, spec, fits='clsgn'): ''' fits a curve to the given points returns lists of x and y values to plot that curve and legend elements with the equation ''' funcArr = genFuncs(fits) mat = [] for w in widths: row = [] for func in funcArr: row += [func(w)] mat += [row] y = np.array(var, dtype=np.float) coefsResid = opt.nnls(mat, y) coefs = coefsResid[0] xp = np.linspace(4, 140, 200) pred = [] yp = [] for x in xp: n = [func(x) for func in funcArr] pred += [sum(np.multiply(coefs, n))] for w in widths: n = [func(w) for func in funcArr] yp += [sum(np.multiply(coefs, n))] r2 = skm.r2_score(y, yp) leg = genLegend(fits, coefs, r2, spec) return xp, pred, leg def makeCoefTable(tech): ''' not currently in use, may salvage later writes CSV with each line containing the coefficients for a regression fit to a particular combination of module, metric, and target frequency ''' file = open("ppaFitting.csv", "w") writer = csv.writer(file) writer.writerow(['Module', 'Metric', 'Freq', '1', 'N', 'N^2', 'log2(N)', 'Nlog2(N)', 'R^2']) for mod in ['add', 'mult', 'comparator', 'shifter']: for comb in [['delay', 5000], ['area', 5000], ['area', 10]]: var = comb[0] freq = comb[1] metric = getVals(tech, mod, freq, var) global widths coefs, r2, funcArr = regress(widths, metric) row = [mod] + comb + np.ndarray.tolist(coefs) + [r2] writer.writerow(row) file.close() def genFuncs(fits='clsgn'): ''' helper function for regress() returns array of functions with one for each term desired in the regression fit ''' funcArr = [] if 'c' in fits: funcArr += [lambda x: 1] if 'l' in fits: funcArr += [lambda x: x] if 's' in fits: funcArr += [lambda x: x**2] if 'g' in fits: funcArr += [lambda x: np.log2(x)] if 'n' in fits: funcArr += [lambda x: x*np.log2(x)] return funcArr def noOutliers(freqs, delays, areas): ''' returns a pared down list of freqs, delays, and areas cuts out any syntheses in which target freq isn't within 75% of the min delay target to focus on interesting area helper function to freqPlot() ''' f=[] d=[] a=[] try: ind = delays.index(min(delays)) med = freqs[ind] for i in range(len(freqs)): norm = freqs[i]/med # if (norm > 0.25) & (norm<1.75): if freqs[i] < 8000: f += [freqs[i]] d += [delays[i]] a += [areas[i]] except: pass return f, d, a def freqPlot(tech, mod, width): ''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width ''' global allSynths freqsL, delaysL, areasL = ([[], []] for i in range(3)) count = 0 for oneSynth in allSynths: if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech): count += 1 ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period freqsL[ind] += [oneSynth.freq] delaysL[ind] += [oneSynth.delay] areasL[ind] += [oneSynth.area] f, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, sharex=True) for ax in (ax1, ax2, ax3, ax4): ax.ticklabel_format(useOffset=False, style='plain') for ind in [0,1]: areas = areasL[ind] delays = delaysL[ind] freqs = freqsL[ind] if ('flop' in mod): areas = [m/2 for m in areas] # since two flops in each module # freqs, delays, areas = noOutliers(freqs, delays, areas) # comment out to see all syntheses c = 'blue' if ind else 'green' adprod = adprodpow(areas, delays, 1) adpow = adprodpow(areas, delays, 2) ax1.scatter(freqs, delays, color=c) ax2.scatter(freqs, areas, color=c) ax3.scatter(freqs, adprod, color=c) ax4.scatter(freqs, adpow, color=c) legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'), lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')] ax1.legend(handles=legend_elements) ax4.set_xlabel("Target Freq (MHz)") ax1.set_ylabel('Delay (ns)') ax2.set_ylabel('Area (sq microns)') ax3.set_ylabel('Area * Delay') ax4.set_ylabel('Area * $Delay^2$') ax1.set_title(mod + '_' + str(width)) plt.savefig('./plots/freqBuckshot/' + tech + '/' + mod + '/' + str(width) + '.png') # plt.show() def squareAreaDelay(tech, mod, width): ''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width ''' global allSynths freqsL, delaysL, areasL = ([[], []] for i in range(3)) for oneSynth in allSynths: if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech): ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period freqsL[ind] += [oneSynth.freq] delaysL[ind] += [oneSynth.delay] areasL[ind] += [oneSynth.area] f, (ax1) = plt.subplots(1, 1) ax2 = ax1.twinx() for ind in [0,1]: areas = areasL[ind] delays = delaysL[ind] targets = freqsL[ind] targets = [1000/f for f in targets] if ('flop' in mod): areas = [m/2 for m in areas] # since two flops in each module targets, delays, areas = noOutliers(targets, delays, areas) # comment out to see all if not ind: achievedDelays = delays c = 'blue' if ind else 'green' ax1.scatter(targets, delays, marker='^', color=c) ax2.scatter(targets, areas, marker='s', color=c) bestAchieved = min(achievedDelays) legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='^', label='delay (timing achieved)'), lines.Line2D([0], [0], color='green', ls='', marker='s', label='area (timing achieved)'), lines.Line2D([0], [0], color='blue', ls='', marker='^', label='delay (timing violated)'), lines.Line2D([0], [0], color='blue', ls='', marker='s', label='area (timing violated)')] ax2.legend(handles=legend_elements, loc='upper left') ax1.set_xlabel("Delay Targeted (ns)") ax1.set_ylabel("Delay Achieved (ns)") ax2.set_ylabel('Area (sq microns)') ax1.set_title(mod + '_' + str(width)) squarify(f) xvals = np.array(ax1.get_xlim()) frac = (min(flatten(delaysL))-xvals[0])/(xvals[1]-xvals[0]) areaLowerLim = min(flatten(areasL))-100 areaUpperLim = max(flatten(areasL))/frac + areaLowerLim ax2.set_ylim([areaLowerLim, areaUpperLim]) ax1.plot(xvals, xvals, ls="--", c=".3") ax1.hlines(y=bestAchieved, xmin=xvals[0], xmax=xvals[1], color="black", ls='--') plt.savefig('./plots/squareareadelay_' + mod + '_' + str(width) + '.png') # plt.show() def squarify(fig): ''' helper function for squareAreaDelay() forces matplotlib figure to be a square ''' w, h = fig.get_size_inches() if w > h: t = fig.subplotpars.top b = fig.subplotpars.bottom axs = h*(t-b) l = (1.-axs/w)/2 fig.subplots_adjust(left=l, right=1-l) else: t = fig.subplotpars.right b = fig.subplotpars.left axs = w*(t-b) l = (1.-axs/h)/2 fig.subplots_adjust(bottom=l, top=1-l) def adprodpow(areas, delays, pow): ''' for each value in [areas] returns area*delay^pow helper function for freqPlot''' result = [] for i in range(len(areas)): result += [(areas[i])*(delays[i])**pow] return result def plotPPA(mod, freq=None, norm=True): ''' for the module specified, plots width vs delay, area, leakage power, and dynamic energy with fits if no freq specified, uses the synthesis with best achievable delay for each width overlays data from both techs ''' plt.rcParams["figure.figsize"] = (12,8) fig, axs = plt.subplots(2, 2) global fitDict modFit = fitDict[mod] oneMetricPlot(mod, 'delay', ax=axs[0,0], fits=modFit[0], freq=freq, norm=norm) oneMetricPlot(mod, 'area', ax=axs[0,1], fits=modFit[1], freq=freq, norm=norm) oneMetricPlot(mod, 'lpower', ax=axs[1,0], fits=modFit[1], freq=freq, norm=norm) oneMetricPlot(mod, 'denergy', ax=axs[1,1], fits=modFit[1], freq=freq, norm=norm) titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best achievable delay)" n = 'normalized' if norm else 'unnormalized' saveStr = './plots/PPA/'+ n + '/' + mod + '.png' plt.suptitle(mod + titleStr) plt.savefig(saveStr) # plt.show() def plotBestAreas(mod): fig, axs = plt.subplots(1, 1) ### all areas on one # mods = ['priorityencoder', 'add', 'csa', 'shiftleft', 'comparator', 'flop'] # colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple'] # legend_elements = [] # for i in range(len(mods)): # oneMetricPlot(mods[i], 'area', ax=axs, freq=10, norm=False, color=colors[i]) # legend_elements += [lines.Line2D([0], [0], color=colors[i], ls='', marker='o', label=mods[i])] # plt.suptitle('Optimized Areas (target freq 10MHz)') # plt.legend(handles=legend_elements) # plt.savefig('./plots/bestareas.png') # plt.show() oneMetricPlot(mod, 'area', freq=10) plt.title(mod + ' Optimized Areas (target freq 10MHz)') plt.savefig('./plots/bestAreas/' + mod + '.png') if __name__ == '__main__': # set up stuff, global variables widths = [8, 16, 32, 64, 128] fitDict = {'add': ['cg', 'l', 'l'], 'mult': ['cg', 'sl', 'ls'], 'comparator': ['cg', 'l', 'l'], 'csa': ['c', 'l', 'l'], 'shiftleft': ['cg', 'n', 'ln'], 'flop': ['c', 'l', 'l'], 'priorityencoder': ['cg', 'l', 'l']} fitDict.update(dict.fromkeys(['mux2', 'mux4', 'mux8'], ['cg', 'l', 'l'])) #data TechSpec = namedtuple("TechSpec", "tech color shape delay area lpower denergy") techSpecs = [['sky90', 'green', 'o', 43.2e-3, 1330.84, 582.81, 520.66], ['tsmc28', 'blue', '^', 12.2e-3, 209.29, 1060, 81.43]] invz1arealeakage = [['sky90', 1.96, 1.98], ['gf32', .351, .3116], ['tsmc28', .252, 1.09]] #['gf32', 'purple', 's', 15e-3] techSpecs = [TechSpec(*t) for t in techSpecs] modules = ['priorityencoder', 'add', 'csa', 'shiftleft', 'comparator', 'flop', 'mux2', 'mux4', 'mux8', 'mult'] # cleanup() # synthsintocsv() # slow, run only when new synth runs to add to csv allSynths = synthsfromcsv('ppaData.csv') # your csv here! # # ### examples # squareAreaDelay('sky90', 'add', 32) # plotBestAreas('add') # oneMetricPlot('add', 'delay') # freqPlot('sky90', 'mux4', 16) for mod in modules: plotPPA(mod, norm=False) plotPPA(mod) # for w in [8, 16, 32, 64, 128]: # freqPlot('sky90', mod, w) # freqPlot('tsmc28', mod, w) plt.close('all') # csvOfBest()