/////////////////////////////////////////// // intdivrestoring.sv // // Written: David_Harris@hmc.edu 12 September 2021 // Modified: // // Purpose: Restoring integer division using a shift register and subtractor // // Documentation: RISC-V System on Chip Design Chapter 12 (Figure 12.19) // // A component of the CORE-V-WALLY configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module div( input logic clk, input logic reset, input logic StallM, input logic FlushE, input logic IntDivE, // integer division/remainder instruction of any type input logic DivSignedE, // signed division input logic W64E, // W-type instructions (divw, divuw, remw, remuw) input logic [`XLEN-1:0] ForwardedSrcAE, ForwardedSrcBE,// Forwarding mux outputs for Source A and B output logic DivBusyE, // Divide is busy - stall pipeline output logic [`XLEN-1:0] QuotM, RemM // Quotient and remainder outputs ); localparam STEPBITS = $clog2(`XLEN/`IDIV_BITSPERCYCLE); // Number of steps typedef enum logic [1:0] {IDLE, BUSY, DONE} statetype; // division FSM state statetype state; logic [`XLEN-1:0] W[`IDIV_BITSPERCYCLE:0]; // Residual for each of k steps logic [`XLEN-1:0] XQ[`IDIV_BITSPERCYCLE:0]; // dividend/quotient for each of k steps logic [`XLEN-1:0] WNext, XQNext; // initialized W and XQ going into registers logic [`XLEN-1:0] DinE, XinE; // divisor & dividend, possibly truncated to 32 bits logic [`XLEN-1:0] DnE; // DnE = ~DinE logic [`XLEN-1:0] DAbsBE; // absolute value of D logic [`XLEN-1:0] DAbsB; // registered absolute value of D, constant during division logic [`XLEN-1:0] XnE; // DXnE = ~XinE logic [`XLEN-1:0] XInitE; // |X|, or original X for divide by 0 logic [`XLEN-1:0] WnM, XQnM; // negated residual W and quotient XQ for postprocessing sign correction logic [STEPBITS:0] step; // division step logic Div0E, Div0M; // divide by 0 logic DivStartE; // start integer division logic SignXE, SignDE; // sign of dividend and divisor logic NegQE, NegWM, NegQM; // negate quotient or residual during postprocessing ////////////////////////////// // Execute Stage: prepare for division calculation with control logic, W logic and absolute values, initialize W and XQ ////////////////////////////// // Divider control signals assign DivStartE = IntDivE & (state == IDLE) & ~StallM; assign DivBusyE = (state == BUSY) | DivStartE; // Handle sign extension for W-type instructions if (`XLEN == 64) begin:rv64 // RV64 has W-type instructions mux2 #(`XLEN) xinmux(ForwardedSrcAE, {ForwardedSrcAE[31:0], 32'b0}, W64E, XinE); mux2 #(`XLEN) dinmux(ForwardedSrcBE, {{32{ForwardedSrcBE[31]&DivSignedE}}, ForwardedSrcBE[31:0]}, W64E, DinE); end else begin // RV32 has no W-type instructions assign XinE = ForwardedSrcAE; assign DinE = ForwardedSrcBE; end // Extract sign bits and check fo division by zero assign SignDE = DivSignedE & DinE[`XLEN-1]; assign SignXE = DivSignedE & XinE[`XLEN-1]; assign NegQE = SignDE ^ SignXE; assign Div0E = (DinE == 0); // Take absolute value for signed operations, and negate D to handle subtraction in divider stages neg #(`XLEN) negd(DinE, DnE); mux2 #(`XLEN) dabsmux(DnE, DinE, SignDE, DAbsBE); // take absolute value for signed operations, and negate for subtraction setp neg #(`XLEN) negx(XinE, XnE); mux3 #(`XLEN) xabsmux(XinE, XnE, ForwardedSrcAE, {Div0E, SignXE}, XInitE); // take absolute value for signed operations, or keep original value for divide by 0 ////////////////////////////// // Division Iterations (effectively stalled execute stage, no suffix) ////////////////////////////// // initialization multiplexers on first cycle of operation mux2 #(`XLEN) wmux(W[`IDIV_BITSPERCYCLE], {`XLEN{1'b0}}, DivStartE, WNext); mux2 #(`XLEN) xmux(XQ[`IDIV_BITSPERCYCLE], XInitE, DivStartE, XQNext); // registers before division steps flopen #(`XLEN) wreg(clk, DivBusyE, WNext, W[0]); flopen #(`XLEN) xreg(clk, DivBusyE, XQNext, XQ[0]); flopen #(`XLEN) dabsreg(clk, DivStartE, DAbsBE, DAbsB); // one copy of divstep for each bit produced per cycle genvar i; for (i=0; i<`IDIV_BITSPERCYCLE; i = i+1) divstep divstep(W[i], XQ[i], DAbsB, W[i+1], XQ[i+1]); ////////////////////////////// // Memory Stage: output sign correction and special cases ////////////////////////////// flopen #(3) Div0eMReg(clk, DivStartE, {Div0E, NegQE, SignXE}, {Div0M, NegQM, NegWM}); // On final setp of signed operations, negate outputs as needed to get correct sign neg #(`XLEN) qneg(XQ[0], XQnM); neg #(`XLEN) wneg(W[0], WnM); // Select appropriate output: normal, negated, or for divide by zero mux3 #(`XLEN) qmux(XQ[0], XQnM, {`XLEN{1'b1}}, {Div0M, NegQM}, QuotM); // Q taken from XQ register, negated if necessary, or all 1s when dividing by zero mux3 #(`XLEN) remmux(W[0], WnM, XQ[0], {Div0M, NegWM}, RemM); // REM taken from W register, negated if necessary, or from X when dividing by zero ////////////////////////////// // Divider FSM to sequence Busy and Done ////////////////////////////// always_ff @(posedge clk) if (reset | FlushE) begin state <= IDLE; end else if (DivStartE) begin step <= 1; if (Div0E) state <= DONE; else state <= BUSY; end else if (state == BUSY) begin // pause one cycle at beginning of signed operations for absolute value if (step[STEPBITS] | (`XLEN==64) & W64E & step[STEPBITS-1]) begin // complete in half the time for W-type instructions state <= DONE; end step <= step + 1; end else if (state == DONE) begin if (StallM) state <= DONE; else state <= IDLE; end endmodule