/////////////////////////////////////////// // wallyTracer.sv // // A component of the Wally configurable RISC-V project. // Implements a RISC-V Verification Interface (RVVI) // to support functional coverage and lockstep simulation. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// `define STD_LOG 0 `define PRINT_PC_INSTR 0 `define PRINT_MOST 0 `define PRINT_ALL 0 `define PRINT_CSRS 0 // Since we are detecting the CSR change by comparing the old value, we need to // ensure the CSR is detected when the pipeline's Writeback stage is not // stalled. If it is stalled we want to hold the old value. `define CONNECT_CSR(name, addr, val) \ logic [P.XLEN-1:0] prev_csr_``name; \ always_ff @(posedge clk) \ prev_csr_``name <= rvvi.csr[0][0][addr]; \ assign rvvi.csr_wb[0][0][addr] = (rvvi.csr[0][0][addr] != prev_csr_``name); \ assign rvvi.csr[0][0][addr] = valid ? val : prev_csr_``name; module wallyTracer import cvw::*; #(parameter cvw_t P) (rvviTrace rvvi); localparam NUM_REGS = P.E_SUPPORTED ? 16 : 32; localparam NUM_CSRS = 4096; // wally specific signals logic reset; logic clk; logic InstrValidD, InstrValidE; logic StallF, StallD; logic STATUS_SXL, STATUS_UXL; logic [P.XLEN-1:0] PCNextF, PCF, PCD, PCE, PCM, PCW; logic [31:0] InstrRawD, InstrRawE, InstrRawM, InstrRawW; logic InstrValidM, InstrValidW; logic StallE, StallM, StallW; logic GatedStallW; logic SelHPTW; logic FlushD, FlushE, FlushM, FlushW; logic TrapM, TrapW; logic HaltM, HaltW; logic [1:0] PrivilegeModeW; logic [P.XLEN-1:0] rf[NUM_REGS]; logic [NUM_REGS-1:0] rf_wb; logic [4:0] rf_a3; logic rf_we3; logic [P.FLEN-1:0] frf[32]; logic [31:0] frf_wb; logic [4:0] frf_a4; logic frf_we4; logic [P.XLEN-1:0] CSRArray [4095:0]; logic [P.XLEN-1:0] CSRArrayOld [4095:0]; logic [NUM_CSRS-1:0] CSR_W; logic CSRWriteM, CSRWriteW; logic [11:0] CSRAdrM, CSRAdrW; logic wfiM; logic InterruptM, InterruptW; logic valid; //For VM Verification logic [(P.XLEN-1):0] IVAdrF,IVAdrD,IVAdrE,IVAdrM,IVAdrW,DVAdrM,DVAdrW; logic [(P.XLEN-1):0] IPTEF,IPTED,IPTEE,IPTEM,IPTEW,DPTEM,DPTEW; logic [(P.PA_BITS-1):0] IPAF,IPAD,IPAE,IPAM,IPAW,DPAM,DPAW; logic [(P.PPN_BITS-1):0] IPPNF,IPPND,IPPNE,IPPNM,IPPNW,DPPNM,DPPNW; logic [1:0] IPageTypeF, IPageTypeD, IPageTypeE, IPageTypeM, IPageTypeW, DPageTypeM, DPageTypeW; logic ReadAccessM,WriteAccessM,ReadAccessW,WriteAccessW; logic ExecuteAccessF,ExecuteAccessD,ExecuteAccessE,ExecuteAccessM,ExecuteAccessW; assign clk = testbench.dut.clk; // assign InstrValidF = testbench.dut.core.ieu.InstrValidF; // not needed yet assign InstrValidD = testbench.dut.core.ieu.c.InstrValidD; assign InstrValidE = testbench.dut.core.ieu.c.InstrValidE; assign InstrValidM = testbench.dut.core.ieu.InstrValidM; assign InstrRawD = testbench.dut.core.ifu.InstrRawD; assign PCNextF = testbench.dut.core.ifu.PCNextF; assign PCF = testbench.dut.core.ifu.PCF; assign PCD = testbench.dut.core.ifu.PCD; assign PCE = testbench.dut.core.ifu.PCE; assign PCM = testbench.dut.core.ifu.PCM; assign reset = testbench.reset; assign StallF = testbench.dut.core.StallF; assign StallD = testbench.dut.core.StallD; assign StallE = testbench.dut.core.StallE; assign StallM = testbench.dut.core.StallM; assign StallW = testbench.dut.core.StallW; assign GatedStallW = testbench.dut.core.lsu.GatedStallW; assign SelHPTW = testbench.dut.core.lsu.hptw.hptw.SelHPTW; assign FlushD = testbench.dut.core.FlushD; assign FlushE = testbench.dut.core.FlushE; assign FlushM = testbench.dut.core.FlushM; assign FlushW = testbench.dut.core.FlushW; assign TrapM = testbench.dut.core.TrapM; assign HaltM = testbench.DCacheFlushStart; if (P.ZICSR_SUPPORTED) begin assign PrivilegeModeW = testbench.dut.core.priv.priv.privmode.PrivilegeModeW; assign STATUS_SXL = testbench.dut.core.priv.priv.csr.csrsr.STATUS_SXL; assign STATUS_UXL = testbench.dut.core.priv.priv.csr.csrsr.STATUS_UXL; assign wfiM = testbench.dut.core.priv.priv.wfiM; assign InterruptM = testbench.dut.core.priv.priv.InterruptM; end else begin assign PrivilegeModeW = 2'b11; assign STATUS_SXL = 0; assign STATUS_UXL = 0; assign wfiM = 0; assign InterruptM = 0; end //For VM Verification assign IVAdrF = testbench.dut.core.ifu.immu.immu.tlb.tlb.VAdr; assign DVAdrM = testbench.dut.core.lsu.dmmu.dmmu.tlb.tlb.VAdr; assign IPAF = testbench.dut.core.ifu.immu.immu.PhysicalAddress; assign DPAM = testbench.dut.core.lsu.dmmu.dmmu.PhysicalAddress; assign ReadAccessM = testbench.dut.core.lsu.dmmu.dmmu.ReadAccessM; assign WriteAccessM = testbench.dut.core.lsu.dmmu.dmmu.WriteAccessM; assign ExecuteAccessF = testbench.dut.core.ifu.immu.immu.ExecuteAccessF; assign IPTEF = testbench.dut.core.ifu.immu.immu.PTE; assign DPTEM = testbench.dut.core.lsu.dmmu.dmmu.PTE; assign IPPNF = testbench.dut.core.ifu.immu.immu.tlb.tlb.PPN; assign DPPNM = testbench.dut.core.lsu.dmmu.dmmu.tlb.tlb.PPN; assign IPageTypeF = testbench.dut.core.ifu.immu.immu.PageTypeWriteVal; assign DPageTypeM = testbench.dut.core.lsu.dmmu.dmmu.PageTypeWriteVal; // CSR connections if (P.ZICSR_SUPPORTED) begin // M-mode trap CSRs `CONNECT_CSR(MSTATUS, 12'h300, testbench.dut.core.priv.priv.csr.csrm.MSTATUS_REGW); `CONNECT_CSR(MEDELEG, 12'h302, testbench.dut.core.priv.priv.csr.csrm.MEDELEG_REGW); `CONNECT_CSR(MIDELEG, 12'h303, testbench.dut.core.priv.priv.csr.csrm.MIDELEG_REGW); `CONNECT_CSR(MIE, 12'h304, testbench.dut.core.priv.priv.csr.csrm.MIE_REGW); `CONNECT_CSR(MTVEC, 12'h305, testbench.dut.core.priv.priv.csr.csrm.MTVEC_REGW); `CONNECT_CSR(MSCRATCH, 12'h340, testbench.dut.core.priv.priv.csr.csrm.MSCRATCH_REGW); `CONNECT_CSR(MEPC, 12'h341, testbench.dut.core.priv.priv.csr.csrm.MEPC_REGW); `CONNECT_CSR(MCAUSE, 12'h342, testbench.dut.core.priv.priv.csr.csrm.MCAUSE_REGW); `CONNECT_CSR(MTVAL, 12'h343, testbench.dut.core.priv.priv.csr.csrm.MTVAL_REGW); `CONNECT_CSR(MIP, 12'h344, testbench.dut.core.priv.priv.csr.csrm.MIP_REGW); // S-mode trap CSRs `CONNECT_CSR(SSTATUS, 12'h100, testbench.dut.core.priv.priv.csr.csrs.csrs.SSTATUS_REGW); `CONNECT_CSR(SIE, 12'h104, testbench.dut.core.priv.priv.csr.csrm.MIE_REGW & 12'h222); `CONNECT_CSR(STVEC, 12'h105, testbench.dut.core.priv.priv.csr.csrs.csrs.STVEC_REGW); `CONNECT_CSR(SSCRATCH, 12'h140, testbench.dut.core.priv.priv.csr.csrs.csrs.SSCRATCH_REGW); `CONNECT_CSR(SEPC, 12'h141, testbench.dut.core.priv.priv.csr.csrs.csrs.SEPC_REGW); `CONNECT_CSR(SCAUSE, 12'h142, testbench.dut.core.priv.priv.csr.csrs.csrs.SCAUSE_REGW); `CONNECT_CSR(STVAL, 12'h143, testbench.dut.core.priv.priv.csr.csrs.csrs.STVAL_REGW); `CONNECT_CSR(SIP, 12'h144, testbench.dut.core.priv.priv.csr.csrm.MIP_REGW & 12'h222 & testbench.dut.core.priv.priv.csr.csrm.MIDELEG_REGW); // Virtual Memory CSRs `CONNECT_CSR(SATP, 12'h180, testbench.dut.core.priv.priv.csr.csrs.csrs.SATP_REGW); // Floating-Point CSRs `CONNECT_CSR(FFLAGS, 12'h001, testbench.dut.core.priv.priv.csr.csru.csru.FFLAGS_REGW); `CONNECT_CSR(FRM, 12'h002, testbench.dut.core.priv.priv.csr.csru.csru.FRM_REGW); `CONNECT_CSR(FCSR, 12'h003, {testbench.dut.core.priv.priv.csr.csru.csru.FRM_REGW, testbench.dut.core.priv.priv.csr.csru.csru.FFLAGS_REGW}); // Counters / Performance Monitoring CSRs `CONNECT_CSR(MCOUNTEREN, 12'h306, testbench.dut.core.priv.priv.csr.csrm.MCOUNTEREN_REGW); `CONNECT_CSR(SCOUNTEREN, 12'h106, testbench.dut.core.priv.priv.csr.csrs.csrs.SCOUNTEREN_REGW); `CONNECT_CSR(MCOUNTINHIBIT, 12'h320, testbench.dut.core.priv.priv.csr.csrm.MCOUNTINHIBIT_REGW); // mhpmevent3-31 not connected (232-33F) `CONNECT_CSR(MCYCLE, 12'hB00, testbench.dut.core.priv.priv.csr.counters.counters.HPMCOUNTER_REGW[0]); // MCYCLE `CONNECT_CSR(MINSTRET, 12'hB02, testbench.dut.core.priv.priv.csr.counters.counters.HPMCOUNTER_REGW[2]); // MINSTRET // mhpmcounter3-31 not connected (B03-B1F) // cycle, time, instret not connected (C00-C02) // hpmcounter3-31 not connected (C03-C1F) // Machine Information Registers and Configuration CSRs `CONNECT_CSR(MISA, 12'h301, testbench.dut.core.priv.priv.csr.csrm.MISA_REGW); `CONNECT_CSR(MENVCFG, 12'h30A, testbench.dut.core.priv.priv.csr.csrm.MENVCFG_REGW); `CONNECT_CSR(SENVCFG, 12'h10A, testbench.dut.core.priv.priv.csr.csrs.csrs.SENVCFG_REGW); `CONNECT_CSR(MSECCFG, 12'h747, 0); // mseccfg `CONNECT_CSR(MVENDORID, 12'hF11, 0); //mvendorid `CONNECT_CSR(MARCHID, 12'hF12, 0); // marchid `CONNECT_CSR(MIMPID, 12'hF13, {{P.XLEN-12{1'b0}}, 12'h100}); // mimpid `CONNECT_CSR(MHARTID, 12'hF14, testbench.dut.core.priv.priv.csr.csrm.MHARTID_REGW); `CONNECT_CSR(MCONFIGPTR, 12'hF15, 0); //mconfigptr // Sstc CSRs `CONNECT_CSR(STIMECMP, 12'h14D, testbench.dut.core.priv.priv.csr.csrs.csrs.STIMECMP_REGW[P.XLEN-1:0]); // Zkr CSRs // seed not connected (015) // extra CSRs for RV32 if (P.XLEN == 32) begin `CONNECT_CSR(MSTATUSH, 12'h310, testbench.dut.core.priv.priv.csr.csrsr.MSTATUSH_REGW); `CONNECT_CSR(MENVCFGH, 12'h31A, testbench.dut.core.priv.priv.csr.csrm.MENVCFGH_REGW); `CONNECT_CSR(MSECCFGH, 12'h757, 0); // mseccfgh `CONNECT_CSR(STIMECMPH, 12'h15D, testbench.dut.core.priv.priv.csr.csrs.csrs.STIMECMP_REGW[63:32]); end end if (P.PMP_ENTRIES > 0) begin localparam inc = P.XLEN == 32 ? 4 : 8; // PMPCFG CSRs (space is 0-15 3a0 - 3af) for (genvar pmpCfgID = 0; pmpCfgID < P.PMP_ENTRIES; pmpCfgID += inc) begin logic [P.XLEN-1:0] pmp; localparam int i4 = pmpCfgID / 4; assign pmp = {testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[pmpCfgID+7], testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[pmpCfgID+6], testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[pmpCfgID+5], testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[pmpCfgID+4], testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[pmpCfgID+3], testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[pmpCfgID+2], testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[pmpCfgID+1], testbench.dut.core.priv.priv.csr.csrm.PMPCFG_ARRAY_REGW[pmpCfgID+0]}; `CONNECT_CSR(PMPCFG``i4, 12'h3A0 + i4, pmp); end // PMPADDR CSRs 3B0 to 3EF for(genvar pmpAddrID = 0; pmpAddrID < P.PMP_ENTRIES; pmpAddrID++) begin `CONNECT_CSR(PMPADDR``pmpAddrID, 12'h3B0 + pmpAddrID, testbench.dut.core.priv.priv.csr.csrm.PMPADDR_ARRAY_REGW[pmpAddrID]); end end // Integer register file assign rf[0] = 0; for(genvar index = 1; index < NUM_REGS; index += 1) assign rf[index] = testbench.dut.core.ieu.dp.regf.rf[index]; assign rf_a3 = testbench.dut.core.ieu.dp.regf.a3; assign rf_we3 = testbench.dut.core.ieu.dp.regf.we3; always_comb begin rf_wb <= 0; if(rf_we3) rf_wb[rf_a3] <= 1'b1; end // Floating-point register file if (P.F_SUPPORTED) begin assign frf_a4 = testbench.dut.core.fpu.fpu.fregfile.a4; assign frf_we4 = testbench.dut.core.fpu.fpu.fregfile.we4; for(genvar index = 0; index < 32; index += 1) assign frf[index] = testbench.dut.core.fpu.fpu.fregfile.rf[index]; end else begin assign frf_a4 = '0; assign frf_we4 = 0; for(genvar index = 0; index < 32; index += 1) assign frf[index] = '0; end always_comb begin frf_wb <= 0; if(frf_we4) frf_wb[frf_a4] <= 1'b1; end // CSR writes assign CSRAdrM = testbench.dut.core.priv.priv.csr.CSRAdrM; assign CSRWriteM = testbench.dut.core.priv.priv.csr.CSRWriteM; // pipeline to writeback stage flopenrc #(32) InstrRawEReg (clk, reset, FlushE, ~StallE, InstrRawD, InstrRawE); flopenrc #(32) InstrRawMReg (clk, reset, FlushM, ~StallM, InstrRawE, InstrRawM); flopenrc #(32) InstrRawWReg (clk, reset, FlushW & ~TrapM, ~StallW, InstrRawM, InstrRawW); flopenrc #(P.XLEN)PCWReg (clk, reset, FlushW & ~TrapM, ~StallW, PCM, PCW); flopenrc #(1) InstrValidMReg (clk, reset, FlushW & ~TrapM, ~StallW, InstrValidM, InstrValidW); flopenrc #(1) TrapWReg (clk, reset, 1'b0, ~StallW, TrapM, TrapW); flopenrc #(1) InterruptWReg (clk, reset, 1'b0, ~StallW, InterruptM, InterruptW); flopenrc #(1) HaltWReg (clk, reset, 1'b0, ~StallW, HaltM, HaltW); flopenrc #(12) CSRAdrWReg (clk, reset, FlushW, ~StallW, CSRAdrM, CSRAdrW); flopenrc #(1) CSRWriteWReg (clk, reset, FlushW, ~StallW, CSRWriteM, CSRWriteW); //for VM Verification flopenrc #(P.XLEN) IVAdrDReg (clk, reset, 1'b0, SelHPTW, IVAdrF, IVAdrD); //Virtual Address for IMMU // *** RT: possible bug SelHPTW probably should be ~StallD flopenrc #(P.XLEN) IVAdrEReg (clk, reset, 1'b0, ~StallE, IVAdrD, IVAdrE); //Virtual Address for IMMU flopenrc #(P.XLEN) IVAdrMReg (clk, reset, 1'b0, ~StallM, IVAdrE, IVAdrM); //Virtual Address for IMMU flopenrc #(P.XLEN) IVAdrWReg (clk, reset, 1'b0, SelHPTW, IVAdrM, IVAdrW); //Virtual Address for IMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW flopenrc #(P.XLEN) DVAdrWReg (clk, reset, 1'b0, SelHPTW, DVAdrM, DVAdrW); //Virtual Address for DMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW flopenrc #(P.PA_BITS) IPADReg (clk, reset, 1'b0, SelHPTW, IPAF, IPAD); //Physical Address for IMMU // *** RT: possible bug SelHPTW probably should be ~StallD flopenrc #(P.PA_BITS) IPAEReg (clk, reset, 1'b0, ~StallE, IPAD, IPAE); //Physical Address for IMMU flopenrc #(P.PA_BITS) IPAMReg (clk, reset, 1'b0, ~StallM, IPAE, IPAM); //Physical Address for IMMU flopenrc #(P.PA_BITS) IPAWReg (clk, reset, 1'b0, SelHPTW, IPAM, IPAW); //Physical Address for IMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW flopenrc #(P.PA_BITS) DPAWReg (clk, reset, 1'b0, SelHPTW, DPAM, DPAW); //Physical Address for DMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW flopenrc #(P.XLEN) IPTEDReg (clk, reset, 1'b0, SelHPTW, IPTEF, IPTED); //PTE for IMMU // *** RT: possible bug SelHPTW probably should be ~StallD flopenrc #(P.XLEN) IPTEEReg (clk, reset, 1'b0, ~StallE, IPTED, IPTEE); //PTE for IMMU flopenrc #(P.XLEN) IPTEMReg (clk, reset, 1'b0, ~StallM, IPTEE, IPTEM); //PTE for IMMU flopenrc #(P.XLEN) IPTEWReg (clk, reset, 1'b0, SelHPTW, IPTEM, IPTEW); //PTE for IMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW flopenrc #(P.XLEN) DPTEWReg (clk, reset, 1'b0, SelHPTW, DPTEM, DPTEW); //PTE for DMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW flopenrc #(2) IPageTypeDReg (clk, reset, 1'b0, SelHPTW, IPageTypeF, IPageTypeD); //PageType (kilo, mega, giga, tera) from IMMU // *** RT: possible bug SelHPTW probably should be ~StallD flopenrc #(2) IPageTypeEReg (clk, reset, 1'b0, ~StallE, IPageTypeD, IPageTypeE); //PageType (kilo, mega, giga, tera) from IMMU flopenrc #(2) IPageTypeMReg (clk, reset, 1'b0, ~StallM, IPageTypeE, IPageTypeM); //PageType (kilo, mega, giga, tera) from IMMU flopenrc #(2) IPageTypeWReg (clk, reset, 1'b0, SelHPTW, IPageTypeM, IPageTypeW); //PageType (kilo, mega, giga, tera) from IMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW flopenrc #(2) DPageTypeWReg (clk, reset, 1'b0, SelHPTW, DPageTypeM, DPageTypeW); //PageType (kilo, mega, giga, tera) from DMMU // *** RT: possible bug SelHPTW probably should be ~GatedStallW flopenrc #(P.PPN_BITS) IPPNDReg (clk, reset, 1'b0, ~StallD, IPPNF, IPPND); //Physical Page Number for IMMU flopenrc #(P.PPN_BITS) IPPNEReg (clk, reset, 1'b0, ~StallE, IPPND, IPPNE); //Physical Page Number for IMMU flopenrc #(P.PPN_BITS) IPPNMReg (clk, reset, 1'b0, ~StallM, IPPNE, IPPNM); //Physical Page Number for IMMU flopenrc #(P.PPN_BITS) IPPNWReg (clk, reset, 1'b0, ~StallW, IPPNM, IPPNW); //Physical Page Number for IMMU flopenrc #(P.PPN_BITS) DPPNWReg (clk, reset, 1'b0, ~StallW, DPPNM, DPPNW); //Physical Page Number for DMMU flopenrc #(1) ReadAccessWReg (clk, reset, 1'b0, ~GatedStallW, ReadAccessM, ReadAccessW); //LoadAccess flopenrc #(1) WriteAccessWReg (clk, reset, 1'b0, ~GatedStallW, WriteAccessM, WriteAccessW); //StoreAccess flopenrc #(1) ExecuteAccessDReg (clk, reset, 1'b0, ~StallD, ExecuteAccessF, ExecuteAccessD); //Instruction Fetch Access flopenrc #(1) ExecuteAccessEReg (clk, reset, 1'b0, ~StallE, ExecuteAccessD, ExecuteAccessE); //Instruction Fetch Access flopenrc #(1) ExecuteAccessMReg (clk, reset, 1'b0, ~StallM, ExecuteAccessE, ExecuteAccessM); //Instruction Fetch Access flopenrc #(1) ExecuteAccessWReg (clk, reset, 1'b0, ~StallW, ExecuteAccessM, ExecuteAccessW); //Instruction Fetch Access // Initially connecting the writeback stage signals, but may need to use M stage // and gate on ~FlushW. assign valid = ((InstrValidW | TrapW) & ~StallW) & ~reset; assign rvvi.clk = clk; assign rvvi.valid[0][0] = valid; assign rvvi.order[0][0] = rvvi.csr[0][0][12'hB02]; // TODO: IMPERAS Should be event order assign rvvi.insn[0][0] = InstrRawW; assign rvvi.pc_rdata[0][0] = PCW; assign rvvi.trap[0][0] = TrapW; assign rvvi.halt[0][0] = HaltW; assign rvvi.intr[0][0] = InterruptW; assign rvvi.mode[0][0] = PrivilegeModeW; assign rvvi.ixl[0][0] = PrivilegeModeW == 2'b11 ? 2'b10 : PrivilegeModeW == 2'b01 ? STATUS_SXL : STATUS_UXL; assign rvvi.pc_wdata[0][0] = ~FlushW ? PCM : ~FlushM ? PCE : ~FlushE ? PCD : ~FlushD ? PCF : PCNextF; for(genvar index = 0; index < NUM_REGS; index += 1) begin assign rvvi.x_wdata[0][0][index] = rf[index]; assign rvvi.x_wb[0][0][index] = rf_wb[index]; end for(genvar index = 0; index < 32; index += 1) begin assign rvvi.f_wdata[0][0][index] = frf[index]; assign rvvi.f_wb[0][0][index] = frf_wb[index]; end // *** implementation only cancel? so sc does not clear? assign rvvi.lrsc_cancel[0][0] = 0; integer index2; string instrWName; int file; string LogFile; if(`STD_LOG) begin instrNameDecTB #(P.XLEN) NameDecoder(rvvi.insn[0][0], instrWName); initial begin LogFile = "logs/boottrace.log"; file = $fopen(LogFile, "w"); end end always_ff @(posedge clk) begin if(valid) begin if(`STD_LOG) begin $fwrite(file, "%016x, %08x, %s\t\t", rvvi.pc_rdata[0][0], rvvi.insn[0][0], instrWName); for(index2 = 0; index2 < NUM_REGS; index2 += 1) begin if(rvvi.x_wb[0][0][index2]) begin $fwrite(file, "rf[%02d] = %016x ", index2, rvvi.x_wdata[0][0][index2]); end end end for(index2 = 0; index2 < 32; index2 += 1) begin if(rvvi.f_wb[0][0][index2]) begin $fwrite(file, "frf[%02d] = %016x ", index2, rvvi.f_wdata[0][0][index2]); end end for(index2 = 0; index2 < NUM_CSRS; index2 += 1) begin if(rvvi.csr_wb[0][0][index2]) begin $fwrite(file, "csr[%03x] = %016x ", index2, rvvi.csr[0][0][index2]); end end $fwrite(file, "\n"); if(`PRINT_PC_INSTR & !(`PRINT_ALL | `PRINT_MOST)) $display("order = %08d, PC = %08x, insn = %08x", rvvi.order[0][0], rvvi.pc_rdata[0][0], rvvi.insn[0][0]); else if(`PRINT_MOST & !`PRINT_ALL) $display("order = %08d, PC = %010x, insn = %08x, trap = %1d, halt = %1d, intr = %1d, mode = %1x, ixl = %1x, pc_wdata = %010x, x%02d = %016x, f%02d = %016x, csr%03x = %016x", rvvi.order[0][0], rvvi.pc_rdata[0][0], rvvi.insn[0][0], rvvi.trap[0][0], rvvi.halt[0][0], rvvi.intr[0][0], rvvi.mode[0][0], rvvi.ixl[0][0], rvvi.pc_wdata[0][0], rf_a3, rvvi.x_wdata[0][0][rf_a3], frf_a4, rvvi.f_wdata[0][0][frf_a4], CSRAdrW, rvvi.csr[0][0][CSRAdrW]); else if(`PRINT_ALL) begin $display("order = %08d, PC = %08x, insn = %08x, trap = %1d, halt = %1d, intr = %1d, mode = %1x, ixl = %1x, pc_wdata = %08x", rvvi.order[0][0], rvvi.pc_rdata[0][0], rvvi.insn[0][0], rvvi.trap[0][0], rvvi.halt[0][0], rvvi.intr[0][0], rvvi.mode[0][0], rvvi.ixl[0][0], rvvi.pc_wdata[0][0]); for(index2 = 0; index2 < NUM_REGS; index2 += 1) begin $display("x%02d = %08x", index2, rvvi.x_wdata[0][0][index2]); end for(index2 = 0; index2 < 32; index2 += 1) begin $display("f%02d = %08x", index2, rvvi.f_wdata[0][0][index2]); end end if (`PRINT_CSRS) begin for(index2 = 0; index2 < NUM_CSRS; index2 += 1) begin if((rvvi.csr[0][0][index2] != CSRArrayOld[index2])) begin $display("%t: CSR %03x = %x", $time(), index2, rvvi.csr[0][0][index2]); end end end end if(HaltW) $finish; end endmodule