/////////////////////////////////////////// // cvtshiftcalc.sv // // Written: me@KatherineParry.com // Modified: 7/5/2022 // // Purpose: Conversion shift calculation // // Documentation: RISC-V System on Chip Design Chapter 13 // // A component of the CORE-V-WALLY configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// module cvtshiftcalc import cvw::*; #(parameter cvw_t P) ( input logic XZero, // is the input zero? input logic ToInt, // to integer conversion? input logic IntToFp, // interger to floating point conversion? input logic [P.FMTBITS-1:0] OutFmt, // output format input logic [P.NE:0] CvtCe, // the calculated expoent input logic [P.NF:0] Xm, // input mantissas input logic [P.CVTLEN-1:0] CvtLzcIn, // input to the Leading Zero Counter (without msb) input logic CvtResSubnormUf, // is the conversion result subnormal or underlows output logic CvtResUf, // does the cvt result unerflow output logic [P.CVTLEN+P.NF:0] CvtShiftIn // number to be shifted ); logic [$clog2(P.NF):0] ResNegNF; // the result's fraction length negated (-NF) /////////////////////////////////////////////////////////////////////////// // shifter /////////////////////////////////////////////////////////////////////////// // seclect the input to the shifter // fp -> int: // | P.XLEN zeros | mantissa | 0's if nessisary | // . // Other problems: // - if shifting to the right (neg CalcExp) then don't a 1 in the round bit (to prevent an incorrect plus 1 later durring rounding) // - we do however want to keep the one in the sticky bit so set one of bits in the sticky bit area to 1 // - ex: for the case 0010000.... (double) // ??? -> fp: // - if result is subnormal or underflowed then we want to shift right i.e. shift right then shift left: // | P.NF-1 zeros | mantissa | 0's if nessisary | // . // - otherwise: // | LzcInM | 0's if nessisary | // . // change to int shift to the left one always_comb // get rid of round bit if needed // | add sticky bit if needed // | | if (ToInt) CvtShiftIn = {{P.XLEN{1'b0}}, Xm[P.NF]&~CvtCe[P.NE], Xm[P.NF-1]|(CvtCe[P.NE]&Xm[P.NF]), Xm[P.NF-2:0], {P.CVTLEN-P.XLEN{1'b0}}}; else if (CvtResSubnormUf) CvtShiftIn = {{P.NF-1{1'b0}}, Xm, {P.CVTLEN-P.NF+1{1'b0}}}; else CvtShiftIn = {CvtLzcIn, {P.NF+1{1'b0}}}; // choose the negative of the fraction size if (P.FPSIZES == 1) begin assign ResNegNF = -($clog2(P.NF)+1)'(P.NF); end else if (P.FPSIZES == 2) begin assign ResNegNF = OutFmt ? -($clog2(P.NF)+1)'(P.NF) : -($clog2(P.NF)+1)'(P.NF1); end else if (P.FPSIZES == 3) begin always_comb case (OutFmt) P.FMT: ResNegNF = -($clog2(P.NF)+1)'(P.NF); P.FMT1: ResNegNF = -($clog2(P.NF)+1)'(P.NF1); P.FMT2: ResNegNF = -($clog2(P.NF)+1)'(P.NF2); default: ResNegNF = 'x; endcase end else if (P.FPSIZES == 4) begin always_comb case (OutFmt) 2'h3: ResNegNF = -($clog2(P.NF)+1)'(P.Q_NF); 2'h1: ResNegNF = -($clog2(P.NF)+1)'(P.D_NF); 2'h0: ResNegNF = -($clog2(P.NF)+1)'(P.S_NF); 2'h2: ResNegNF = -($clog2(P.NF)+1)'(P.H_NF); endcase end // determine if the result underflows ??? -> fp // - if the first 1 is shifted out of the result then the result underflows // - can't underflow an integer to fp conversions assign CvtResUf = ($signed(CvtCe) < $signed({{P.NE-$clog2(P.NF){1'b1}}, ResNegNF}))&~XZero&~IntToFp; endmodule