/////////////////////////////////////////// // csrc.sv // // Written: David_Harris@hmc.edu 9 January 2021 // Modified: // // Purpose: Counter CSRs // See RISC-V Privileged Mode Specification 20190608 3.1.10-11 // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT // OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /////////////////////////////////////////// `include "wally-config.vh" // Ben 06/17/21: I brought in MTIME, MTIMECMP from CLINT. *** this probably isn't perfect though because it doesn't yet provide the ability to change these through CSR writes; overall this whole thing might need some rethinking module csrc #(parameter MCYCLE = 12'hB00, MTIME = 12'hB01, // address not specified in privileged spec. Consider moving to CLINT to match SiFive MTIMECMP = 12'hB21, // not specified in privileged spec. Move to CLINT MINSTRET = 12'hB02, MHPMCOUNTERBASE = 12'hB00, //MHPMCOUNTER3 = 12'hB03, //MHPMCOUNTER4 = 12'hB04, // ... more counters //MHPMCOUNTER31 = 12'hB1F, MCYCLEH = 12'hB80, MTIMEH = 12'hB81, // address not specified in privileged spec. Consider moving to CLINT to match SiFive MTIMECMPH = 12'hBA1, // not specified in privileged spec. Move to CLINT MINSTRETH = 12'hB82, MHPMCOUNTERHBASE = 12'hB80, //MHPMCOUNTER3H = 12'hB83, //MHPMCOUNTER4H = 12'hB84, // ... more counters //MHPMCOUNTER31H = 12'hB9F, MCOUNTERINHIBIT = 12'h320, MHPMEVENTBASE = 12'h320, //MHPMEVENT3 = 12'h323, //MHPMEVENT4 = 12'h324, // ... more counters //MHPMEVENT31 = 12'h33F, CYCLE = 12'hC00, TIME = 12'hC01, INSTRET = 12'hC02, HPMCOUNTERBASE = 12'hC00, //HPMCOUNTER3 = 12'hC03, //HPMCOUNTER4 = 12'hC04, // ...more counters //HPMCOUNTER31 = 12'hC1F, CYCLEH = 12'hC80, TIMEH = 12'hC81, // not specified INSTRETH = 12'hC82, HPMCOUNTERHBASE = 12'hC80 //HPMCOUNTER3H = 12'hC83, //HPMCOUNTER4H = 12'hC84, // ... more counters //HPMCOUNTER31H = 12'hC9F ) ( input logic clk, reset, input logic StallD, StallE, StallM, StallW, input logic FlushD, FlushE, FlushM, FlushW, input logic InstrValidM, LoadStallD, CSRMWriteM, input logic BPPredDirWrongM, input logic BTBPredPCWrongM, input logic RASPredPCWrongM, input logic BPPredClassNonCFIWrongM, input logic [4:0] InstrClassM, input logic DCacheMiss, input logic DCacheAccess, input logic [11:0] CSRAdrM, input logic [1:0] PrivilegeModeW, input logic [`XLEN-1:0] CSRWriteValM, input logic [31:0] MCOUNTINHIBIT_REGW, MCOUNTEREN_REGW, SCOUNTEREN_REGW, input logic [63:0] MTIME_CLINT, MTIMECMP_CLINT, output logic [`XLEN-1:0] CSRCReadValM, output logic IllegalCSRCAccessM ); generate if (`ZICOUNTERS_SUPPORTED) begin // logic [63:0] TIME_REGW, TIMECMP_REGW; logic [63:0] CYCLE_REGW, INSTRET_REGW; logic [63:0] HPMCOUNTER3_REGW, HPMCOUNTER4_REGW; // add more performance counters here if desired logic [63:0] CYCLEPlusM, INSTRETPlusM; logic [63:0] HPMCOUNTER3PlusM, HPMCOUNTER4PlusM; // logic [`XLEN-1:0] NextTIMEM; logic [`XLEN-1:0] NextCYCLEM, NextINSTRETM; logic [`XLEN-1:0] NextHPMCOUNTER3M, NextHPMCOUNTER4M; logic WriteCYCLEM, WriteINSTRETM; logic WriteHPMCOUNTER3M, WriteHPMCOUNTER4M; logic [4:0] CounterNumM; logic [`COUNTERS-1:3][`XLEN-1:0] HPMCOUNTER_REGW, HPMCOUNTERH_REGW; logic InstrValidNotFlushedM; assign InstrValidNotFlushedM = InstrValidM & ~StallW & ~FlushW; //logic [`COUNTERS-1:3][`XLEN-1:0] HPMCOUNTERH_REGW; // Write enables // assign WriteTIMEM = CSRMWriteM && (CSRAdrM == MTIME); // assign WriteTIMECMPM = CSRMWriteM && (CSRAdrM == MTIMECMP); assign WriteCYCLEM = CSRMWriteM && (CSRAdrM == MCYCLE); assign WriteINSTRETM = CSRMWriteM && (CSRAdrM == MINSTRET); //assign WriteHPMCOUNTER3M = CSRMWriteM && (CSRAdrM == MHPMCOUNTER3); //assign WriteHPMCOUNTER4M = CSRMWriteM && (CSRAdrM == MHPMCOUNTER4); // Counter adders with inhibits for power savings assign CYCLEPlusM = CYCLE_REGW + {63'b0, ~MCOUNTINHIBIT_REGW[0]}; //assign TIMEPlusM = TIME_REGW + 1; // can't be inhibited assign INSTRETPlusM = INSTRET_REGW + {63'b0, InstrValidNotFlushedM & ~MCOUNTINHIBIT_REGW[2]}; //assign HPMCOUNTER3PlusM = HPMCOUNTER3_REGW + {63'b0, LoadStallD & ~MCOUNTINHIBIT_REGW[3]}; // count load stalls //assign HPMCOUNTER4PlusM = HPMCOUNTER4_REGW + {63'b0, 1'b0 & ~MCOUNTINHIBIT_REGW[4]}; // change to count signals assign NextCYCLEM = WriteCYCLEM ? CSRWriteValM : CYCLEPlusM[`XLEN-1:0]; //assign NextTIMEM = WriteTIMEM ? CSRWriteValM : TIMEPlusM[`XLEN-1:0]; assign NextINSTRETM = WriteINSTRETM ? CSRWriteValM : INSTRETPlusM[`XLEN-1:0]; //assign NextHPMCOUNTER3M = WriteHPMCOUNTER3M ? CSRWriteValM : HPMCOUNTER3PlusM[`XLEN-1:0]; //assign NextHPMCOUNTER4M = WriteHPMCOUNTER4M ? CSRWriteValM : HPMCOUNTER4PlusM[`XLEN-1:0]; // parameterized number of additional counters if (`COUNTERS > 3) begin logic [`COUNTERS-1:3] WriteHPMCOUNTERM; logic [`COUNTERS-1:0] CounterEvent; logic [63:0] /*HPMCOUNTER_REGW[`COUNTERS-1:3], */ HPMCOUNTERPlusM[`COUNTERS-1:3]; logic [`XLEN-1:0] NextHPMCOUNTERM[`COUNTERS-1:3]; genvar i; // could replace special counters 0-2 with this loop for all counters assign CounterEvent[0] = 1'b1; assign CounterEvent[1] = 1'b0; if(`QEMU) begin assign CounterEvent[`COUNTERS-1:2] = 0; end else begin logic LoadStallE, LoadStallM; flopenrc #(1) LoadStallEReg(.clk, .reset, .clear(FlushE), .en(~StallE), .d(LoadStallD), .q(LoadStallE)); flopenrc #(1) LoadStallMReg(.clk, .reset, .clear(FlushM), .en(~StallM), .d(LoadStallE), .q(LoadStallM)); assign CounterEvent[2] = InstrValidNotFlushedM; assign CounterEvent[3] = LoadStallM & InstrValidNotFlushedM; assign CounterEvent[4] = BPPredDirWrongM & InstrValidNotFlushedM; assign CounterEvent[5] = InstrClassM[0] & InstrValidNotFlushedM; assign CounterEvent[6] = BTBPredPCWrongM & InstrValidNotFlushedM; assign CounterEvent[7] = (InstrClassM[4] | InstrClassM[2] | InstrClassM[1]) & InstrValidNotFlushedM; assign CounterEvent[8] = RASPredPCWrongM & InstrValidNotFlushedM; assign CounterEvent[9] = InstrClassM[3] & InstrValidNotFlushedM; assign CounterEvent[10] = BPPredClassNonCFIWrongM & InstrValidNotFlushedM; assign CounterEvent[11] = DCacheAccess & InstrValidNotFlushedM; assign CounterEvent[12] = DCacheMiss & InstrValidNotFlushedM; assign CounterEvent[`COUNTERS-1:13] = 0; // eventually give these sources, including FP instructions, I$/D$ misses, branches and mispredictions end for (i = 3; i < `COUNTERS; i = i+1) begin assign WriteHPMCOUNTERM[i] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERBASE + i); assign NextHPMCOUNTERM[i][`XLEN-1:0] = WriteHPMCOUNTERM[i] ? CSRWriteValM : HPMCOUNTERPlusM[i][`XLEN-1:0]; always @(posedge clk, posedge reset) // ModelSim doesn't like syntax of passing array element to flop if (reset) HPMCOUNTER_REGW[i][`XLEN-1:0] <= #1 0; else if (~StallW) HPMCOUNTER_REGW[i][`XLEN-1:0] <= #1 NextHPMCOUNTERM[i]; //flopr #(`XLEN) HPMCOUNTERreg[i](clk, reset, NextHPMCOUNTERM[i], HPMCOUNTER_REGW[i]); if (`XLEN==32) begin logic [`COUNTERS-1:3] WriteHPMCOUNTERHM; logic [`XLEN-1:0] NextHPMCOUNTERHM[`COUNTERS-1:3]; assign HPMCOUNTERPlusM[i] = {HPMCOUNTERH_REGW[i], HPMCOUNTER_REGW[i]} + {63'b0, CounterEvent[i] & ~MCOUNTINHIBIT_REGW[i]}; assign WriteHPMCOUNTERHM[i] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERHBASE + i); assign NextHPMCOUNTERHM[i] = WriteHPMCOUNTERHM[i] ? CSRWriteValM : HPMCOUNTERPlusM[i][63:32]; always @(posedge clk, posedge reset) // ModelSim doesn't like syntax of passing array element to flop if (reset) HPMCOUNTERH_REGW[i][`XLEN-1:0] <= #1 0; else if (~StallW) HPMCOUNTERH_REGW[i][`XLEN-1:0] <= #1 NextHPMCOUNTERHM[i]; //flopr #(`XLEN) HPMCOUNTERHreg[i](clk, reset, NextHPMCOUNTERHM[i], HPMCOUNTER_REGW[i][63:32]); end else begin assign HPMCOUNTERPlusM[i] = HPMCOUNTER_REGW[i] + {63'b0, CounterEvent[i] & ~MCOUNTINHIBIT_REGW[i]}; end end end // Write / update counters // Only the Machine mode versions of the counter CSRs are writable if (`XLEN==64) begin// 64-bit counters // flopr #(64) TIMEreg(clk, reset, WriteTIMEM ? CSRWriteValM : TIME_REGW + 1, TIME_REGW); // may count off a different clock*** // flopenr #(64) TIMECMPreg(clk, reset, WriteTIMECMPM, CSRWriteValM, TIMECMP_REGW); flopr #(64) CYCLEreg(clk, reset, NextCYCLEM, CYCLE_REGW); flopr #(64) INSTRETreg(clk, reset, NextINSTRETM, INSTRET_REGW); //flopr #(64) HPMCOUNTER3reg(clk, reset, NextHPMCOUNTER3M, HPMCOUNTER3_REGW); //flopr #(64) HPMCOUNTER4reg(clk, reset, NextHPMCOUNTER4M, HPMCOUNTER4_REGW); end else begin // 32-bit low and high counters logic WriteTIMEHM, WriteTIMECMPHM, WriteCYCLEHM, WriteINSTRETHM; //logic WriteHPMCOUNTER3HM, WriteHPMCOUNTER4HM; logic [`XLEN-1:0] NextCYCLEHM, NextTIMEHM, NextINSTRETHM; //logic [`XLEN-1:0] NextHPMCOUNTER3HM, NextHPMCOUNTER4HM; // Write Enables // assign WriteTIMEHM = CSRMWriteM && (CSRAdrM == MTIMEH); // assign WriteTIMECMPHM = CSRMWriteM && (CSRAdrM == MTIMECMPH); assign WriteCYCLEHM = CSRMWriteM && (CSRAdrM == MCYCLEH); assign WriteINSTRETHM = CSRMWriteM && (CSRAdrM == MINSTRETH); //assign WriteHPMCOUNTER3HM = CSRMWriteM && (CSRAdrM == MHPMCOUNTER3H); //assign WriteHPMCOUNTER4HM = CSRMWriteM && (CSRAdrM == MHPMCOUNTER4H); assign NextCYCLEHM = WriteCYCLEM ? CSRWriteValM : CYCLEPlusM[63:32]; // assign NextTIMEHM = WriteTIMEHM ? CSRWriteValM : TIMEPlusM[63:32]; assign NextINSTRETHM = WriteINSTRETHM ? CSRWriteValM : INSTRETPlusM[63:32]; //assign NextHPMCOUNTER3HM = WriteHPMCOUNTER3HM ? CSRWriteValM : HPMCOUNTER3PlusM[63:32]; //assign NextHPMCOUNTER4HM = WriteHPMCOUNTER4HM ? CSRWriteValM : HPMCOUNTER4PlusM[63:32]; // Counter CSRs // flopr #(32) TIMEreg(clk, reset, NextTIMEM, TIME_REGW); // may count off a different clock*** // flopenr #(32) TIMECMPreg(clk, reset, WriteTIMECMPM, CSRWriteValM, TIMECMP_REGW[31:0]); flopr #(32) CYCLEreg(clk, reset, NextCYCLEM, CYCLE_REGW[31:0]); flopr #(32) INSTRETreg(clk, reset, NextINSTRETM, INSTRET_REGW[31:0]); //flopr #(32) HPMCOUNTER3reg(clk, reset, NextHPMCOUNTER3M, HPMCOUNTER3_REGW[31:0]); //flopr #(32) HPMCOUNTER4reg(clk, reset, NextHPMCOUNTER4M, HPMCOUNTER4_REGW[31:0]); // flopr #(32) TIMEHreg(clk, reset, NextTIMEHM, TIME_REGW); // may count off a different clock*** // flopenr #(32) TIMECMPHreg(clk, reset, WriteTIMECMPHM, CSRWriteValM, TIMECMP_REGW[63:32]); flopr #(32) CYCLEHreg(clk, reset, NextCYCLEHM, CYCLE_REGW[63:32]); flopr #(32) INSTRETHreg(clk, reset, NextINSTRETHM, INSTRET_REGW[63:32]); //flopr #(32) HPMCOUNTER3Hreg(clk, reset, NextHPMCOUNTER3HM, HPMCOUNTER3_REGW[63:32]); //flopr #(32) HPMCOUNTER4Hreg(clk, reset, NextHPMCOUNTER4HM, HPMCOUNTER4_REGW[63:32]); end // eventually move TIME and TIMECMP to the CLINT -- Ben 06/17/21: sure let's give that a shot! // run TIME off asynchronous reference clock // synchronize write enable to TIME // four phase handshake to synchronize reads from TIME // interrupt on timer compare // ability to disable optional CSRs // Read Counters, or cause excepiton if insufficient privilege in light of COUNTEREN flags assign CounterNumM = CSRAdrM[4:0]; // which counter to read? if (`XLEN==64) // 64-bit counter reads always_comb if (PrivilegeModeW == `M_MODE || MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin IllegalCSRCAccessM = 0; if (CSRAdrM >= MHPMCOUNTERBASE+3 && CSRAdrM < MHPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-MHPMCOUNTERBASE]; else if (CSRAdrM >= HPMCOUNTERBASE+3 && CSRAdrM < HPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-HPMCOUNTERBASE]; else case (CSRAdrM) MTIME: CSRCReadValM = MTIME_CLINT; MTIMECMP: CSRCReadValM = MTIMECMP_CLINT; MCYCLE: CSRCReadValM = CYCLE_REGW; MINSTRET: CSRCReadValM = INSTRET_REGW; //MHPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW; //MHPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW; TIME: CSRCReadValM = MTIME_CLINT; CYCLE: CSRCReadValM = CYCLE_REGW; INSTRET: CSRCReadValM = INSTRET_REGW; //HPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW; //HPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW; default: begin CSRCReadValM = 0; IllegalCSRCAccessM = 1; end endcase end else begin IllegalCSRCAccessM = 1; // no privileges for this csr CSRCReadValM = 0; end else // 32-bit counter reads always_comb if (PrivilegeModeW == `M_MODE || MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin IllegalCSRCAccessM = 0; if (CSRAdrM >= MHPMCOUNTERBASE+3 && CSRAdrM < MHPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-MHPMCOUNTERBASE]; else if (CSRAdrM >= HPMCOUNTERBASE+3 && CSRAdrM < HPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-HPMCOUNTERBASE]; else if (CSRAdrM >= MHPMCOUNTERHBASE+3 && CSRAdrM < MHPMCOUNTERHBASE+`COUNTERS) CSRCReadValM = HPMCOUNTERH_REGW[CSRAdrM-MHPMCOUNTERHBASE]; else if (CSRAdrM >= HPMCOUNTERHBASE+3 && CSRAdrM < HPMCOUNTERHBASE+`COUNTERS) CSRCReadValM = HPMCOUNTERH_REGW[CSRAdrM-HPMCOUNTERHBASE]; else case (CSRAdrM) MTIME: CSRCReadValM = MTIME_CLINT[31:0]; MTIMECMP: CSRCReadValM = MTIMECMP_CLINT[31:0]; MCYCLE: CSRCReadValM = CYCLE_REGW[31:0]; MINSTRET: CSRCReadValM = INSTRET_REGW[31:0]; //MHPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW[31:0]; //MHPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW[31:0]; TIME: CSRCReadValM = MTIME_CLINT[31:0]; CYCLE: CSRCReadValM = CYCLE_REGW[31:0]; INSTRET: CSRCReadValM = INSTRET_REGW[31:0]; //HPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW[31:0]; //HPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW[31:0]; MTIMEH: CSRCReadValM = MTIME_CLINT[63:32]; MTIMECMPH: CSRCReadValM = MTIMECMP_CLINT[63:32]; MCYCLEH: CSRCReadValM = CYCLE_REGW[63:32]; MINSTRETH: CSRCReadValM = INSTRET_REGW[63:32]; //MHPMCOUNTER3H: CSRCReadValM = HPMCOUNTER3_REGW[63:32]; //MHPMCOUNTER4H: CSRCReadValM = HPMCOUNTER4_REGW[63:32]; TIMEH: CSRCReadValM = MTIME_CLINT[63:32]; CYCLEH: CSRCReadValM = CYCLE_REGW[63:32]; INSTRETH: CSRCReadValM = INSTRET_REGW[63:32]; //HPMCOUNTER3H: CSRCReadValM = HPMCOUNTER3_REGW[63:32]; //HPMCOUNTER4H: CSRCReadValM = HPMCOUNTER4_REGW[63:32]; default: begin CSRCReadValM = 0; IllegalCSRCAccessM = 1; end endcase end else begin IllegalCSRCAccessM = 1; // no privileges for this csr CSRCReadValM = 0; end end else begin assign CSRCReadValM = 0; assign IllegalCSRCAccessM = 1; end endgenerate endmodule /* Bad code from class /////////////////////////////////////////// // csrc.sv // // Written: David_Harris@hmc.edu 9 January 2021 // Modified:ssanghai@hmc.edu 2nd March // Added a configurable number of counters // dottolia@hmc.edu 20 April 2021 // Make counters synthesizable // // Purpose: Counter CSRs // See RISC-V Privileged Mode Specification 20190608 3.1.10-11 // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT // OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /////////////////////////////////////////// `include "wally-config.vh" module csrc #(parameter // counters MHPMCOUNTERBASE = 12'hB00, MHPMCOUNTERHBASE = 12'hB80, MPHMEVENTBASE = 12'h320, HPMCOUNTERBASE = 12'hC00, HPMCOUNTERHBASE = 12'hC80, )(input logic clk, reset, input logic StallD, StallE, StallM, StallW, input logic InstrValidM, LoadStallD, CSRMWriteM, input logic BPPredDirWrongM, input logic BTBPredPCWrongM, input logic RASPredPCWrongM, input logic BPPredClassNonCFIWrongM, input logic [4:0] InstrClassM, input logic [11:0] CSRAdrM, input logic [1:0] PrivilegeModeW, input logic [`XLEN-1:0] CSRWriteValM, input logic [31:0] MCOUNTINHIBIT_REGW, MCOUNTEREN_REGW, SCOUNTEREN_REGW, output logic [`XLEN-1:0] CSRCReadValM, output logic IllegalCSRCAccessM); // counters // create Counter arrays to store address of each counter integer MHPMCOUNTER [`COUNTERS:0]; integer MHPMCOUNTERH [`COUNTERS:0]; integer HPMCOUNTER [`COUNTERS:0]; integer HPMCOUNTERH [`COUNTERS:0]; integer MHPEVENT [`COUNTERS:0]; genvar i; // *** this is totally incorrect. Fix parameterized counters dh 6/9/21 generate for (i = 0; i <= `COUNTERS; i = i + 1) begin if (i != 1) begin always @(posedge reset) begin MHPMCOUNTER[i] = 12'hB00 + i; // not sure this addition is legit MHPMCOUNTERH[i] = 12'hB80 + i; HPMCOUNTER[i] = 12'hC00 + i; HPMCOUNTERH[i] = 12'hC80 + i; MHPEVENT[i] = 12'h320 + i; // MHPEVENT[0] = MCOUNTERINHIBIT end end end //end for loop endgenerate logic [`COUNTERS:0] MCOUNTEN; assign MCOUNTEN[0] = 1'b1; assign MCOUNTEN[1] = 1'b0; assign MCOUNTEN[2] = InstrValidM & ~StallW; assign MCOUNTEN[3] = LoadStallD & ~StallD; assign MCOUNTEN[4] = BPPredDirWrongM & ~StallM; assign MCOUNTEN[5] = InstrClassM[0] & ~StallM; assign MCOUNTEN[6] = BTBPredPCWrongM & ~StallM; assign MCOUNTEN[7] = (InstrClassM[4] | InstrClassM[2] | InstrClassM[1]) & ~StallM; assign MCOUNTEN[8] = RASPredPCWrongM & ~StallM; assign MCOUNTEN[9] = InstrClassM[3] & ~StallM; assign MCOUNTEN[10] = BPPredClassNonCFIWrongM & ~StallM; assign MCOUNTEN[`COUNTERS:11] = 0; genvar j; generate if (`ZICOUNTERS_SUPPORTED) begin logic [`COUNTERS:0][63:0] HPMCOUNTER_REGW; logic [`COUNTERS:0][63:0] HPMCOUNTERPlusM; logic [`COUNTERS:0][`XLEN-1:0] NextHPMCOUNTERM; logic [`COUNTERS:0] WriteHPMCOUNTERM; logic [4:0] CounterNumM; assign CounterNumM = CSRAdrM[4:0]; // which counter to read? *** for (j=0; j<= `COUNTERS; j = j+1) begin // Write enables if (j != 1) begin assign WriteHPMCOUNTERM[j] = CSRMWriteM && (CSRAdrM == MHPMCOUNTER[j]); // Count Signals assign HPMCOUNTERPlusM[j] = HPMCOUNTER_REGW[j] + {63'b0, MCOUNTEN[j] & ~MCOUNTINHIBIT_REGW[j]}; assign NextHPMCOUNTERM[j] = WriteHPMCOUNTERM[j] ? CSRWriteValM : HPMCOUNTERPlusM[j][`XLEN-1:0]; end // Write / update counters // Only the Machine mode versions of the counter CSRs are writable if (`XLEN==64) begin // 64-bit counters flopenr #(64) HPMCOUNTERreg_j(clk, reset, ~StallW, NextHPMCOUNTERM[j], HPMCOUNTER_REGW[j]); end else begin // 32-bit low and high counters logic [`COUNTERS:0] WriteHPMCOUNTERHM; logic [`COUNTERS:0] [`XLEN-1:0] NextHPMCOUNTERHM; // Write Enables assign WriteHPMCOUNTERHM[j] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERH[j]); assign NextHPMCOUNTERHM[j] = WriteHPMCOUNTERHM[j] ? CSRWriteValM : HPMCOUNTERPlusM[j][63:32]; // Counter CSRs flopenr #(32) HPMCOUNTERreg_j(clk, reset, ~StallW, NextHPMCOUNTERM[j], HPMCOUNTER_REGW[j][31:0]); flopenr #(32) HPMCOUNTERHreg_j(clk, reset, ~StallW, NextHPMCOUNTERHM[j], HPMCOUNTER_REGW[j][63:32]); end end // end for // eventually move TIME and TIMECMP to the CLINT // run TIME off asynchronous reference clock // synchronize write enable to TIME // four phase handshake to synchronize reads from TIME // interrupt on timer compare // ability to disable optional CSRs // Read Counters, or cause excepiton if insufficient privilege in light of COUNTEREN flags if (`XLEN==64) begin // 64-bit counter reads always_comb if (PrivilegeModeW == `M_MODE || MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin if (CSRAdrM[11:5] == MHPMCOUNTER[0][11:5] || CSRAdrM[11:5] == HPMCOUNTER[0][11:5]) begin CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM[4:0]]; IllegalCSRCAccessM = 0; end // //case (CSRAdrM) // MHPMCOUNTER[j]: CSRCReadValM = HPMCOUNTER_REGW[j]; // HPMCOUNTER[j]: CSRCReadValM = HPMCOUNTER_REGW[j]; // default: begin // CSRCReadValM = 0; // IllegalCSRCAccessM = 1; // end // endcase // end else begin IllegalCSRCAccessM = 1; // no privileges for this csr CSRCReadValM = 0; end end else begin IllegalCSRCAccessM = 1; // no privileges for this csr CSRCReadValM = 0; end end else begin // 32-bit counter reads always_comb if (PrivilegeModeW == `M_MODE || MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin if (CSRAdrM[11:5] == MHPMCOUNTER[0][11:5] || CSRAdrM[11:5] == HPMCOUNTER[0][11:5] || CSRAdrM[11:5] == MHPMCOUNTERH[0][11:5] || CSRAdrM[11:5] == HPMCOUNTERH[0][11:5]) begin CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM[4:0]]; IllegalCSRCAccessM = 0; end else begin IllegalCSRCAccessM = 1; // no privileges for this csr CSRCReadValM = 0; end // IllegalCSRCAccessM = 0; // case (CSRAdrM) // MHPMCOUNTER[j]: CSRCReadValM = HPMCOUNTER_REGW[j][31:0]; // HPMCOUNTER[j]: CSRCReadValM = HPMCOUNTER_REGW[j][31:0]; // MHPMCOUNTERH[j]: CSRCReadValM = HPMCOUNTER_REGW[j][63:32]; // HPMCOUNTERH[j]: CSRCReadValM = HPMCOUNTER_REGW[j][63:32]; // default: begin // CSRCReadValM = 0; // IllegalCSRCAccessM = 1; // end // endcase end else begin IllegalCSRCAccessM = 1; // no privileges for this csr CSRCReadValM = 0; end end // 32-bit counter end end // end for big if else begin assign CSRCReadValM = 0; assign IllegalCSRCAccessM = 1; end // end for else endgenerate endmodule */