/////////////////////////////////////////// // ahbcacheinterface.sv // // Written: Ross Thompson ross1728@gmail.com August 29, 2022 // Modified: // // Purpose: Cache/Bus data path. // Bus Side logic // register the fetch data from the next level of memory. // This register should be necessary for timing. There is no register in the uncore or // ahblite controller between the memories and this cache. // // A component of the CORE-V-WALLY configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module ahbcacheinterface #(parameter BEATSPERLINE, LINELEN, LOGWPL, LLENPOVERAHBW, CACHE_ENABLED) ( input logic HCLK, HRESETn, // bus interface input logic HREADY, // AHB peripheral ready input logic [`AHBW-1:0] HRDATA, // AHB read data output logic [2:0] HSIZE, // AHB transaction width output logic [2:0] HBURST, // AHB burst length output logic [1:0] HTRANS, // AHB transaction type, 00: IDLE, 10 NON_SEQ, 11 SEQ output logic HWRITE, // AHB 0: Read operation 1: Write operation output logic [`PA_BITS-1:0] HADDR, // AHB address output logic [`AHBW-1:0] HWDATA, // AHB write data output logic [`AHBW/8-1:0] HWSTRB, // AHB byte mask // cache interface input logic [`PA_BITS-1:0] CacheBusAdr, // Address of cache line input logic [`LLEN-1:0] CacheReadDataWordM, // one word of cache line during a writeback input logic CacheableOrFlushCacheM, // Memory operation is cacheable or flushing D$ input logic Cacheable, // Memory operation is cachable input logic [1:0] CacheBusRW, // Cache bus operation, 01: writeback, 10: fetch output logic CacheBusAck, // Handshack to $ indicating bus transaction completed output logic [LINELEN-1:0] FetchBuffer, // Register to hold beats of cache line as the arrive from bus output logic [LOGWPL-1:0] BeatCount, // Beat position within the cache line output logic SelBusBeat, // Tells the cache to select the word from ReadData or WriteData from BeatCount rather than PAdr // uncached interface input logic [`PA_BITS-1:0] PAdr, // Physical address of uncached memory operation input logic [`LLEN-1:0] WriteDataM, // IEU write data for uncached store input logic [1:0] BusRW, // Uncached memory operation read/write control: 10: read, 01: write input logic [2:0] Funct3, // Size of uncached memory operation // lsu/ifu interface input logic Stall, // Core pipeline is stalled input logic Flush, // Pipeline stage flush. Prevents bus transaction from starting output logic BusStall, // Bus is busy with an in flight memory operation output logic BusCommitted); // Bus is busy with an in flight memory operation and it is not safe to take an interrupt localparam integer BeatCountThreshold = CACHE_ENABLED ? BEATSPERLINE - 1 : 0; logic [`PA_BITS-1:0] LocalHADDR; logic [LOGWPL-1:0] BeatCountDelayed; logic CaptureEn; logic [`AHBW-1:0] PreHWDATA; genvar index; // fetch buffer is made of BEATSPERLINE flip-flops for (index = 0; index < BEATSPERLINE; index++) begin:fetchbuffer logic [BEATSPERLINE-1:0] CaptureBeat; assign CaptureBeat[index] = CaptureEn & (index == BeatCountDelayed); flopen #(`AHBW) fb(.clk(HCLK), .en(CaptureBeat[index]), .d(HRDATA), .q(FetchBuffer[(index+1)*`AHBW-1:index*`AHBW])); end mux2 #(`PA_BITS) localadrmux(PAdr, CacheBusAdr, Cacheable, LocalHADDR); assign HADDR = ({{`PA_BITS-LOGWPL{1'b0}}, BeatCount} << $clog2(`AHBW/8)) + LocalHADDR; mux2 #(3) sizemux(.d0(Funct3), .d1(`AHBW == 32 ? 3'b010 : 3'b011), .s(Cacheable), .y(HSIZE)); // When AHBW is less than LLEN need extra muxes to select the subword from cache's read data. logic [`AHBW-1:0] CacheReadDataWordAHB; if(LLENPOVERAHBW > 1) begin logic [`AHBW-1:0] AHBWordSets [(LLENPOVERAHBW)-1:0]; genvar index; for (index = 0; index < LLENPOVERAHBW; index++) begin:readdatalinesetsmux assign AHBWordSets[index] = CacheReadDataWordM[(index*`AHBW)+`AHBW-1: (index*`AHBW)]; end assign CacheReadDataWordAHB = AHBWordSets[BeatCount[$clog2(LLENPOVERAHBW)-1:0]]; end else assign CacheReadDataWordAHB = CacheReadDataWordM[`AHBW-1:0]; mux2 #(`AHBW) HWDATAMux(.d0(CacheReadDataWordAHB), .d1(WriteDataM[`AHBW-1:0]), .s(~(CacheableOrFlushCacheM)), .y(PreHWDATA)); flopen #(`AHBW) wdreg(HCLK, HREADY, PreHWDATA, HWDATA); // delay HWDATA by 1 cycle per spec // *** bummer need a second byte mask for bus as it is AHBW rather than LLEN. // probably can merge by muxing PAdrM's LLEN/8-1 index bit based on HTRANS being != 0. logic [`AHBW/8-1:0] BusByteMaskM; swbytemask #(`AHBW) busswbytemask(.Size(HSIZE), .Adr(HADDR[$clog2(`AHBW/8)-1:0]), .ByteMask(BusByteMaskM)); flopen #(`AHBW/8) HWSTRBReg(HCLK, HREADY, BusByteMaskM[`AHBW/8-1:0], HWSTRB); buscachefsm #(BeatCountThreshold, LOGWPL) AHBBuscachefsm( .HCLK, .HRESETn, .Flush, .BusRW, .Stall, .BusCommitted, .BusStall, .CaptureEn, .SelBusBeat, .CacheBusRW, .CacheBusAck, .BeatCount, .BeatCountDelayed, .HREADY, .HTRANS, .HWRITE, .HBURST); endmodule