/////////////////////////////////////////// // ram_ahb.sv // // Written: David_Harris@hmc.edu 9 January 2021 // Modified: // // Purpose: On-chip RAM, external to core, with AHB interface // // Documentation: RISC-V System on Chip Design // // A component of the CORE-V-WALLY configurable RISC-V project. // https://github.com/openhwgroup/cvw // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// module ram_ahb import cvw::*; #(parameter cvw_t P, parameter BASE=0, RANGE = 65535, PRELOAD = 0) ( input logic HCLK, HRESETn, input logic HSELRam, input logic [P.PA_BITS-1:0] HADDR, input logic HWRITE, input logic HREADY, input logic [1:0] HTRANS, input logic [P.XLEN-1:0] HWDATA, input logic [P.XLEN/8-1:0] HWSTRB, output logic [P.XLEN-1:0] HREADRam, output logic HRESPRam, HREADYRam ); localparam ADDR_WIDTH = $clog2(RANGE/8); localparam OFFSET = $clog2(P.XLEN/8); logic [P.XLEN/8-1:0] ByteMask; logic [P.PA_BITS-1:0] HADDRD, RamAddr; logic initTrans; logic memwrite, memwriteD, memread; logic nextHREADYRam; logic DelayReady; // a new AHB transactions starts when HTRANS requests a transaction, // the peripheral is selected, and the previous transaction is completing assign initTrans = HREADY & HSELRam & HTRANS[1] ; assign memwrite = initTrans & HWRITE; assign memread = initTrans & ~HWRITE; flopenr #(1) memwritereg(HCLK, ~HRESETn, HREADY, memwrite, memwriteD); flopenr #(P.PA_BITS) haddrreg(HCLK, ~HRESETn, HREADY, HADDR, HADDRD); // Stall on a read after a write because the RAM can't take both adddresses on the same cycle assign nextHREADYRam = (~(memwriteD & memread)) & ~DelayReady; flopr #(1) readyreg(HCLK, ~HRESETn, nextHREADYRam, HREADYRam); assign HRESPRam = 1'b0; // OK // On writes or during a wait state, use address delayed by one cycle to sync RamAddr with HWDATA or hold stalled address mux2 #(P.PA_BITS) adrmux(HADDR, HADDRD, memwriteD | ~HREADY, RamAddr); // single-ported RAM ram1p1rwbe #(P.USE_SRAM, RANGE/8, P.XLEN, PRELOAD) memory(.clk(HCLK), .ce(1'b1), .addr(RamAddr[ADDR_WIDTH+OFFSET-1:OFFSET]), .we(memwriteD), .din(HWDATA), .bwe(HWSTRB), .dout(HREADRam)); // use this to add arbitrary latency to ram. Helps test AHB controller correctness if(P.RAM_LATENCY > 0) begin logic [7:0] NextCycle, Cycle; logic CntEn, CntRst; logic CycleFlag; flopenr #(8) counter (HCLK, ~HRESETn | CntRst, CntEn, NextCycle, Cycle); assign NextCycle = Cycle + 1'b1; typedef enum logic {READY, DELAY} statetype; statetype CurrState, NextState; always_ff @(posedge HCLK) if (~HRESETn) CurrState <= READY; else CurrState <= NextState; always_comb begin case(CurrState) READY: if(initTrans & ~CycleFlag) NextState = DELAY; else NextState = READY; DELAY: if(CycleFlag) NextState = READY; else NextState = DELAY; default: NextState = READY; endcase end assign CycleFlag = Cycle == P.RAM_LATENCY[7:0]; assign CntEn = NextState == DELAY; assign DelayReady = NextState == DELAY; assign CntRst = NextState == READY; end else begin assign DelayReady = 1'b0; end endmodule