#!/usr/bin/python3 # Madeleine Masser-Frye mmasserfrye@hmc.edu 5/22 import scipy.optimize as opt import subprocess import csv import re from matplotlib.cbook import flatten import matplotlib.pyplot as plt import matplotlib.lines as lines import numpy as np from collections import namedtuple import sklearn.metrics as skm def synthsfromcsv(filename): Synth = namedtuple("Synth", "module tech width freq delay area lpower denergy") with open(filename, newline='') as csvfile: csvreader = csv.reader(csvfile) global allSynths allSynths = list(csvreader)[1:] for i in range(len(allSynths)): for j in range(len(allSynths[0])): try: allSynths[i][j] = int(allSynths[i][j]) except: try: allSynths[i][j] = float(allSynths[i][j]) except: pass allSynths[i] = Synth(*allSynths[i]) return allSynths def synthsintocsv(): ''' writes a CSV with one line for every available synthesis each line contains the module, tech, width, target freq, and resulting metrics ''' print("This takes a moment...") bashCommand = "find . -path '*runs/ppa*rv32e*' -prune" output = subprocess.check_output(['bash','-c', bashCommand]) allSynths = output.decode("utf-8").split('\n')[:-1] specReg = re.compile('[a-zA-Z0-9]+') metricReg = re.compile('-?\d+\.\d+[e]?[-+]?\d*') file = open("ppaData.csv", "w") writer = csv.writer(file) writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (fJ)']) for oneSynth in allSynths: module, width, risc, tech, freq = specReg.findall(oneSynth)[2:7] tech = tech[:-2] metrics = [] for phrase in [['Path Slack', 'qor'], ['Design Area', 'qor'], ['100', 'power']]: bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*' bashCommand = bashCommand.format(*phrase) try: output = subprocess.check_output(['bash','-c', bashCommand]) except: print(module + width + tech + freq + " doesn't have reports") print("Consider running cleanup() first") nums = metricReg.findall(str(output)) nums = [float(m) for m in nums] metrics += nums delay = 1000/int(freq) - metrics[0] area = metrics[1] lpower = metrics[4] denergy = (metrics[2] + metrics[3])*delay*1000 # (switching + internal powers)*delay, more practical units for regression coefs if ('flop' in module): # since two flops in each module [area, lpower, denergy] = [n/2 for n in [area, lpower, denergy]] writer.writerow([module, tech, width, freq, delay, area, lpower, denergy]) file.close() def cleanup(): ''' removes runs that didn't work ''' bashCommand = 'grep -r "Error" runs/ppa*/reports/*qor*' try: output = subprocess.check_output(['bash','-c', bashCommand]) allSynths = output.decode("utf-8").split('\n')[:-1] for run in allSynths: run = run.split('MHz')[0] bc = 'rm -r '+ run + '*' output = subprocess.check_output(['bash','-c', bc]) except: pass bashCommand = "find . -path '*runs/ppa*rv32e*' -prune" output = subprocess.check_output(['bash','-c', bashCommand]) allSynths = output.decode("utf-8").split('\n')[:-1] for oneSynth in allSynths: for phrase in [['Path Length', 'qor'], ['Design Area', 'qor'], ['100', 'power']]: bashCommand = 'grep "{}" '+ oneSynth[2:]+'/reports/*{}*' bashCommand = bashCommand.format(*phrase) try: output = subprocess.check_output(['bash','-c', bashCommand]) except: bc = 'rm -r '+ oneSynth[2:] try: output = subprocess.check_output(['bash','-c', bc]) except: pass print("All cleaned up!") def getVals(tech, module, var, freq=None): ''' for a specified tech, module, and variable/metric returns a list of values for that metric in ascending width order works at a specified target frequency or if none is given, uses the synthesis with the best achievable delay for each width ''' metric = [] widthL = [] if (freq != None): for oneSynth in allSynths: if (oneSynth.freq == freq) & (oneSynth.tech == tech) & (oneSynth.module == module): widthL += [oneSynth.width] osdict = oneSynth._asdict() metric += [osdict[var]] metric = [x for _, x in sorted(zip(widthL, metric))] # ordering else: for w in widths: for oneSynth in bestSynths: if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == module): osdict = oneSynth._asdict() met = osdict[var] metric += [met] return metric def csvOfBest(): bestSynths = [] for tech in [x.tech for x in techSpecs]: for mod in modules: for w in widths: m = np.Inf # large number to start best = None if [mod, tech, w] in leftblue: for oneSynth in allSynths: if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == mod): if (oneSynth.freq < m) & (1000/oneSynth.delay < oneSynth.freq): if ([mod, tech, w] != ['mux2', 'sky90', 128]) or (oneSynth.area < 1100): m = oneSynth.freq best = oneSynth else: for oneSynth in allSynths: if (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == mod): if (oneSynth.delay < m) & (1000/oneSynth.delay > oneSynth.freq): m = oneSynth.delay best = oneSynth if (best != None) & (best not in bestSynths): bestSynths += [best] file = open("bestSynths.csv", "w") writer = csv.writer(file) writer.writerow(['Module', 'Tech', 'Width', 'Target Freq', 'Delay', 'Area', 'L Power (nW)', 'D energy (fJ)']) for synth in bestSynths: writer.writerow(list(synth)) file.close() return bestSynths def genLegend(fits, coefs, r2, spec, ale=False): ''' generates a list of two legend elements labels line with fit equation and dots with tech and r squared of the fit ''' coefsr = [str(round(c, 3)) for c in coefs] eq = '' ind = 0 eqDict = {'c': '', 'l': 'N', 's': '$N^2$', 'g': '$log_2$(N)', 'n': 'N$log_2$(N)'} if ale: if (normAddWidth == 32): eqDict = {'c': '', 'l': '(N/32)', 's': '$(N/32)^2$', 'g': '$log_2$(N/32)', 'n': '(N/32)$log_2$(N/32)'} elif normAddWidth != 1: print('Legend equations are wrong') for k in eqDict.keys(): if k in fits: if str(coefsr[ind]) != '0.0': eq += " + " + coefsr[ind] + eqDict[k] ind += 1 eq = eq[3:] # chop off leading ' + ' legend_elements = [lines.Line2D([0], [0], color=spec.color, label=eq)] legend_elements += [lines.Line2D([0], [0], color=spec.color, ls='', marker=spec.shape, label=spec.tech +' $R^2$='+ str(round(r2, 4)))] return legend_elements def oneMetricPlot(module, var, freq=None, ax=None, fits='clsgn', norm=True, color=None): ''' module: string module name freq: int freq (MHz) var: string delay, area, lpower, or denergy fits: constant, linear, square, log2, Nlog2 plots given variable vs width for all matching syntheses with regression ''' singlePlot = True if ax or (freq == 10): singlePlot = False if ax is None: ax = plt.gca() fullLeg = [] allWidths = [] allMetrics = [] ale = (var != 'delay') # if not delay, must be area, leakage, or energy for spec in techSpecs: metric = getVals(spec.tech, module, var, freq=freq) if norm: techdict = spec._asdict() norm = techdict[var] metric = [m/norm for m in metric] if len(metric) == 5: # don't include the spec if we don't have points for all widths xp, pred, leg = regress(widths, metric, spec, fits, ale=ale) fullLeg += leg c = color if color else spec.color ax.scatter(widths, metric, color=c, marker=spec.shape) ax.plot(xp, pred, color=c) allWidths += widths allMetrics += metric combined = TechSpec('combined', 'red', '_', 0, 0, 0, 0) xp, pred, leg = regress(allWidths, allMetrics, combined, fits, ale=ale) fullLeg += leg ax.plot(xp, pred, color='red') if norm: ylabeldic = {"lpower": "Leakage Power (add32)", "denergy": "Energy/Op (add32)", "area": "Area (add32)", "delay": "Delay (FO4)"} else: ylabeldic = {"lpower": "Leakage Power (nW)", "denergy": "Dynamic Energy (fJ)", "area": "Area (sq microns)", "delay": "Delay (ns)"} ax.legend(handles=fullLeg) ax.set_xticks(widths) ax.set_xlabel("Width (bits)") ax.set_ylabel(ylabeldic[var]) if (module in ['flop', 'csa']) & (var == 'delay'): ax.set_ylim(ymin=0) if singlePlot: titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best achievable delay)" ax.set_title(module + titleStr) plt.savefig('./plots/PPA/'+ module + '_' + var + '.png') # plt.show() def regress(widths, var, spec, fits='clsgn', ale=False): ''' fits a curve to the given points returns lists of x and y values to plot that curve and legend elements with the equation ''' funcArr = genFuncs(fits) widths = [w/normAddWidth for w in widths] mat = [] for w in widths: row = [] for func in funcArr: row += [func(w)] mat += [row] y = np.array(var, dtype=np.float) coefs = opt.nnls(mat, y)[0] yp = [] for w in widths: n = [func(w) for func in funcArr] yp += [sum(np.multiply(coefs, n))] r2 = skm.r2_score(y, yp) xp = np.linspace(4, 140, 200) pred = [] for x in xp: n = [func(x/normAddWidth) for func in funcArr] pred += [sum(np.multiply(coefs, n))] leg = genLegend(fits, coefs, r2, spec, ale=ale) return xp, pred, leg def makeCoefTable(tech): ''' not currently in use, may salvage later writes CSV with each line containing the coefficients for a regression fit to a particular combination of module, metric, and target frequency ''' file = open("ppaFitting.csv", "w") writer = csv.writer(file) writer.writerow(['Module', 'Metric', 'Freq', '1', 'N', 'N^2', 'log2(N)', 'Nlog2(N)', 'R^2']) for mod in ['add', 'mult', 'comparator', 'shifter']: for comb in [['delay', 5000], ['area', 5000], ['area', 10]]: var = comb[0] freq = comb[1] metric = getVals(tech, mod, freq, var) global widths coefs, r2, funcArr = regress(widths, metric) row = [mod] + comb + np.ndarray.tolist(coefs) + [r2] writer.writerow(row) file.close() def genFuncs(fits='clsgn'): ''' helper function for regress() returns array of functions with one for each term desired in the regression fit ''' funcArr = [] if 'c' in fits: funcArr += [lambda x: 1] if 'l' in fits: funcArr += [lambda x: x] if 's' in fits: funcArr += [lambda x: x**2] if 'g' in fits: funcArr += [lambda x: np.log2(x)] if 'n' in fits: funcArr += [lambda x: x*np.log2(x)] return funcArr def noOutliers(median, freqs, delays, areas): ''' returns a pared down list of freqs, delays, and areas cuts out any syntheses in which target freq isn't within 75% of the min delay target to focus on interesting area helper function to freqPlot() ''' f=[] d=[] a=[] for i in range(len(freqs)): norm = freqs[i]/median if (norm > 0.4) & (norm<1.4): f += [freqs[i]] d += [delays[i]] a += [areas[i]] return f, d, a def freqPlot(tech, mod, width): ''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width ''' freqsL, delaysL, areasL = ([[], []] for i in range(3)) for oneSynth in allSynths: if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech): ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period freqsL[ind] += [oneSynth.freq] delaysL[ind] += [oneSynth.delay] areasL[ind] += [oneSynth.area] median = np.median(list(flatten(freqsL))) f, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, sharex=True) for ax in (ax1, ax2, ax3, ax4): ax.ticklabel_format(useOffset=False, style='plain') for ind in [0,1]: areas = areasL[ind] delays = delaysL[ind] freqs = freqsL[ind] freqs, delays, areas = noOutliers(median, freqs, delays, areas) # comment out to see all syntheses c = 'blue' if ind else 'green' adprod = adprodpow(areas, delays, 1) adpow = adprodpow(areas, delays, 2) ax1.scatter(freqs, delays, color=c) ax2.scatter(freqs, areas, color=c) ax3.scatter(freqs, adprod, color=c) ax4.scatter(freqs, adpow, color=c) legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='o', label='timing achieved'), lines.Line2D([0], [0], color='blue', ls='', marker='o', label='slack violated')] ax1.legend(handles=legend_elements) ax4.set_xlabel("Target Freq (MHz)") ax1.set_ylabel('Delay (ns)') ax2.set_ylabel('Area (sq microns)') ax3.set_ylabel('Area * Delay') ax4.set_ylabel('Area * $Delay^2$') ax1.set_title(mod + '_' + str(width)) plt.savefig('./plots/freqBuckshot/' + tech + '/' + mod + '/' + str(width) + '.png') # plt.show() def squareAreaDelay(tech, mod, width): ''' plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width ''' global allSynths freqsL, delaysL, areasL = ([[], []] for i in range(3)) for oneSynth in allSynths: if (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech): ind = (1000/oneSynth.delay < oneSynth.freq) # when delay is within target clock period freqsL[ind] += [oneSynth.freq] delaysL[ind] += [oneSynth.delay] areasL[ind] += [oneSynth.area] f, (ax1) = plt.subplots(1, 1) ax2 = ax1.twinx() for ind in [0,1]: areas = areasL[ind] delays = delaysL[ind] targets = freqsL[ind] targets = [1000/f for f in targets] targets, delays, areas = noOutliers(targets, delays, areas) # comment out to see all if not ind: achievedDelays = delays c = 'blue' if ind else 'green' ax1.scatter(targets, delays, marker='^', color=c) ax2.scatter(targets, areas, marker='s', color=c) bestAchieved = min(achievedDelays) legend_elements = [lines.Line2D([0], [0], color='green', ls='', marker='^', label='delay (timing achieved)'), lines.Line2D([0], [0], color='green', ls='', marker='s', label='area (timing achieved)'), lines.Line2D([0], [0], color='blue', ls='', marker='^', label='delay (timing violated)'), lines.Line2D([0], [0], color='blue', ls='', marker='s', label='area (timing violated)')] ax2.legend(handles=legend_elements, loc='upper left') ax1.set_xlabel("Delay Targeted (ns)") ax1.set_ylabel("Delay Achieved (ns)") ax2.set_ylabel('Area (sq microns)') ax1.set_title(mod + '_' + str(width)) squarify(f) xvals = np.array(ax1.get_xlim()) frac = (min(flatten(delaysL))-xvals[0])/(xvals[1]-xvals[0]) areaLowerLim = min(flatten(areasL))-100 areaUpperLim = max(flatten(areasL))/frac + areaLowerLim ax2.set_ylim([areaLowerLim, areaUpperLim]) ax1.plot(xvals, xvals, ls="--", c=".3") ax1.hlines(y=bestAchieved, xmin=xvals[0], xmax=xvals[1], color="black", ls='--') plt.savefig('./plots/squareareadelay_' + mod + '_' + str(width) + '.png') # plt.show() def squarify(fig): ''' helper function for squareAreaDelay() forces matplotlib figure to be a square ''' w, h = fig.get_size_inches() if w > h: t = fig.subplotpars.top b = fig.subplotpars.bottom axs = h*(t-b) l = (1.-axs/w)/2 fig.subplots_adjust(left=l, right=1-l) else: t = fig.subplotpars.right b = fig.subplotpars.left axs = w*(t-b) l = (1.-axs/h)/2 fig.subplots_adjust(bottom=l, top=1-l) def adprodpow(areas, delays, pow): ''' for each value in [areas] returns area*delay^pow helper function for freqPlot''' result = [] for i in range(len(areas)): result += [(areas[i])*(delays[i])**pow] return result def plotPPA(mod, freq=None, norm=True, aleOpt=False): ''' for the module specified, plots width vs delay, area, leakage power, and dynamic energy with fits if no freq specified, uses the synthesis with best achievable delay for each width overlays data from both techs ''' plt.rcParams["figure.figsize"] = (12,8) fig, axs = plt.subplots(2, 2) modFit = fitDict[mod] oneMetricPlot(mod, 'delay', ax=axs[0,0], fits=modFit[0], freq=freq, norm=norm) oneMetricPlot(mod, 'area', ax=axs[0,1], fits=modFit[1], freq=freq, norm=norm) oneMetricPlot(mod, 'lpower', ax=axs[1,0], fits=modFit[1], freq=freq, norm=norm) oneMetricPlot(mod, 'denergy', ax=axs[1,1], fits=modFit[1], freq=freq, norm=norm) if aleOpt: oneMetricPlot(mod, 'area', ax=axs[0,1], fits=modFit[1], freq=10, norm=norm, color='black') oneMetricPlot(mod, 'lpower', ax=axs[1,0], fits=modFit[1], freq=10, norm=norm, color='black') oneMetricPlot(mod, 'denergy', ax=axs[1,1], fits=modFit[1], freq=10, norm=norm, color='black') titleStr = " (target " + str(freq)+ "MHz)" if freq != None else " (best achievable delay)" n = 'normalized' if norm else 'unnormalized' saveStr = './plots/PPA/'+ n + '/' + mod + '.png' plt.suptitle(mod + titleStr) if freq != 10: plt.savefig(saveStr) # plt.show() def plotBestAreas(mod): fig, axs = plt.subplots(1, 1) ### all areas on one # mods = ['priorityencoder', 'add', 'csa', 'shiftleft', 'comparator', 'flop'] # colors = ['red', 'orange', 'yellow', 'green', 'blue', 'purple'] # legend_elements = [] # for i in range(len(mods)): # oneMetricPlot(mods[i], 'area', ax=axs, freq=10, norm=False, color=colors[i]) # legend_elements += [lines.Line2D([0], [0], color=colors[i], ls='', marker='o', label=mods[i])] # plt.suptitle('Optimized Areas (target freq 10MHz)') # plt.legend(handles=legend_elements) # plt.savefig('./plots/bestareas.png') # plt.show() oneMetricPlot(mod, 'area', freq=10) plt.title(mod + ' Optimized Areas (target freq 10MHz)') plt.savefig('./plots/bestAreas/' + mod + '.png') if __name__ == '__main__': ############################## # set up stuff, global variables widths = [8, 16, 32, 64, 128] modules = ['priorityencoder', 'add', 'csa', 'shiftleft', 'comparator', 'flop', 'mux2', 'mux4', 'mux8', 'mult'] normAddWidth = 32 # divisor to use with N since normalizing to add_32 fitDict = {'add': ['cg', 'l', 'l'], 'mult': ['cg', 's', 'ls'], 'comparator': ['cg', 'l', 'l'], 'csa': ['c', 'l', 'l'], 'shiftleft': ['cg', 'l', 'ln'], 'flop': ['c', 'l', 'l'], 'priorityencoder': ['cg', 'l', 'l']} fitDict.update(dict.fromkeys(['mux2', 'mux4', 'mux8'], ['cg', 'l', 'l'])) leftblue = [['mux2', 'sky90', 32], ['mux2', 'sky90', 64], ['mux2', 'sky90', 128], ['mux2', 'tsmc28', 16], ['mux2', 'tsmc28', 8], ['mux8', 'sky90', 32]] TechSpec = namedtuple("TechSpec", "tech color shape delay area lpower denergy") techSpecs = [['sky90', 'green', 'o', 43.2e-3, 1330.84, 582.81, 520.66], ['tsmc28', 'blue', '^', 12.2e-3, 209.29, 1060, 81.43]] techSpecs = [TechSpec(*t) for t in techSpecs] # invz1arealeakage = [['sky90', 1.96, 1.98], ['gf32', .351, .3116], ['tsmc28', .252, 1.09]] #['gf32', 'purple', 's', 15e-3] ############################## # cleanup() # run to remove garbage synth runs # synthsintocsv() # slow, run only when new synth runs to add to csv allSynths = synthsfromcsv('ppaData.csv') # your csv here! bestSynths = csvOfBest() # ### plotting examples # squareAreaDelay('sky90', 'add', 32) # oneMetricPlot('add', 'delay') # freqPlot('sky90', 'mux4', 16) for mod in modules: # plotPPA(mod, norm=False) plotPPA(mod, aleOpt=True) plotBestAreas(mod) for w in [8, 16, 32, 64, 128]: freqPlot('sky90', mod, w) freqPlot('tsmc28', mod, w) plt.close('all')