/////////////////////////////////////////////////////// // srt.sv // // // // Written 10/31/96 by David Harris harrisd@leland // // Updated 10/19/21 David_Harris@hmc.edu // // // // This file models a simple Radix 2 SRT divider. // // // /////////////////////////////////////////////////////// // This Verilog file models a radix 2 SRT divider which // produces one quotient digit per cycle. The divider // keeps the partial remainder in carry-save form. ///////// // srt // ///////// module srt(input logic clk, input logic req, input logic sqrt, // 1 to compute sqrt(a), 0 to compute a/b input logic [51:0] a, b, output logic [54:0] rp, rm); // A simple Radix 2 SRT divider/sqrt // Internal signals logic [55:0] ps, pc; // partial remainder in carry-save form logic [55:0] d; // divisor logic [55:0] psa, pca; // partial remainder result of csa logic [55:0] psn, pcn; // partial remainder for next cycle logic [55:0] dn; // divisor for next cycle logic [55:0] dsel; // selected divisor multiple logic qp, qz, qm; // quotient is +1, 0, or -1 logic [55:0] d_b; // inverse of divisor // Top Muxes and Registers // When start is asserted, the inputs are loaded into the divider. // Otherwise, the divisor is retained and the partial remainder // is fed back for the next iteration. mux2 psmux({psa[54:0], 1'b0}, {4'b0001, a}, req, psn); flop psflop(clk, psn, ps); mux2 pcmux({pca[54:0], 1'b0}, 56'b0, req, pcn); flop pcflop(clk, pcn, pc); mux2 dmux(d, {4'b0001, b}, req, dn); flop dflop(clk, dn, d); // Quotient Selection logic // Given partial remainder, select quotient of +1, 0, or -1 (qp, qz, pm) // Accumulate quotient digits in a shift register qsel qsel(ps[55:52], pc[55:52], qp, qz, qm); qacc qacc(clk, req, qp, qz, qm, rp, rm); // Divisor Selection logic inv dinv(d, d_b); mux3 divisorsel(d_b, 56'b0, d, qp, qz, qm, dsel); // Partial Product Generation csa csa(ps, pc, dsel, qp, psa, pca); endmodule ////////// // mux2 // ////////// module mux2(input logic [55:0] in0, in1, input logic sel, output logic [55:0] out); assign #1 out = sel ? in1 : in0; endmodule ////////// // flop // ////////// module flop(clk, in, out); input clk; input [55:0] in; output [55:0] out; logic [55:0] state; always @(posedge clk) state <= #1 in; assign #1 out = state; endmodule ////////// // qsel // ////////// module qsel(input logic [55:52] ps, pc, output logic qp, qz, qm); logic [55:52] p, g; logic magnitude, sign, cout; // The quotient selection logic is presented for simplicity, not // for efficiency. You can probably optimize your logic to // select the proper divisor with less delay. // Quotient equations from EE371 lecture notes 13-20 assign p = ps ^ pc; assign g = ps & pc; assign #1 magnitude = ~(&p[54:52]); assign #1 cout = g[54] | (p[54] & (g[53] | p[53] & g[52])); assign #1 sign = p[55] ^ cout; /* assign #1 magnitude = ~((ps[54]^pc[54]) && (ps[53]^pc[53]) && (ps[52]^pc[52])); assign #1 sign = (ps[55]^pc[55])^ (ps[54] && pc[54] || ((ps[54]^pc[54]) && (ps[53]&&pc[53] || ((ps[53]^pc[53]) && (ps[52]&&pc[52]))))); */ // Produce quotient = +1, 0, or -1 assign #1 qp = magnitude && ~sign; assign #1 qz = ~magnitude; assign #1 qm = magnitude && sign; endmodule ////////// // qacc // ////////// module qacc(clk, req, qp, qz, qm, rp, rm); input clk; input req; input qp; input qz; input qm; output [54:0] rp; output [54:0] rm; logic [54:0] rp, rm; // quotient bit is +/- 1; logic [7:0] count; always @(posedge clk) begin if (req) begin rp <= #1 0; rm <= #1 0; end else begin rp <= #1 {rp[54:0], qp}; rm <= #1 {rm[54:0], qm}; end end endmodule ///////// // inv // ///////// module inv(input logic [55:0] in, output logic [55:0] out); assign #1 out = ~in; endmodule ////////// // mux3 // ////////// module mux3(in0, in1, in2, sel0, sel1, sel2, out); input [55:0] in0; input [55:0] in1; input [55:0] in2; input sel0; input sel1; input sel2; output [55:0] out; // lazy inspection of the selects // really we should make sure selects are mutually exclusive assign #1 out = sel0 ? in0 : (sel1 ? in1 : in2); endmodule ///////// // csa // ///////// module csa(in1, in2, in3, cin, out1, out2); input [55:0] in1; input [55:0] in2; input [55:0] in3; input cin; output [55:0] out1; output [55:0] out2; // This block adds in1, in2, in3, and cin to produce // a result out1 / out2 in carry-save redundant form. // cin is just added to the least significant bit and // is required to handle adding a negative divisor. // Fortunately, the carry (out2) is shifted left by one // bit, leaving room in the least significant bit to // insert cin. assign #1 out1 = in1 ^ in2 ^ in3; assign #1 out2 = {in1[54:0] & (in2[54:0] | in3[54:0]) | (in2[54:0] & in3[54:0]), cin}; endmodule ////////////// // finaladd // ////////////// module finaladd(rp, rm, r); input [54:0] rp; input [54:0] rm; output [51:0] r; logic [54:0] diff; // this magic block performs the final addition for you // to convert the positive and negative quotient digits // into a normalized mantissa. It returns the 52 bit // mantissa after shifting to guarantee a leading 1. // You can assume this block operates in one cycle // and do not need to budget it in your area and power // calculations. // Since no rounding is performed, the result may be too // small by one unit in the least significant place (ulp). // The checker ignores such an error. assign #1 diff = rp - rm; assign #1 r = diff[54] ? diff[53:2] : diff[52:1]; endmodule ///////////// // counter // ///////////// module counter(input logic clk, input logic req, output logic done); logic [5:0] count; // This block of control logic sequences the divider // through its iterations. You may modify it if you // build a divider which completes in fewer iterations. // You are not responsible for the (trivial) circuit // design of the block. always @(posedge clk) begin if (count == 54) done <= #1 1; else if (done || req) done <= #1 0; if (req) count <= #1 0; else count <= #1 count+1; end endmodule /////////// // clock // /////////// module clock(clk); output clk; // Internal clk signal logic clk; endmodule ////////// // testbench // ////////// module testbench; logic clk; logic req; logic done; logic [51:0] a; logic [51:0] b; logic [51:0] r; logic [54:0] rp, rm; // positive quotient digits // Test parameters parameter MEM_SIZE = 40000; parameter MEM_WIDTH = 52+52+52; `define memr 51:0 `define memb 103:52 `define mema 155:104 // Test logicisters logic [MEM_WIDTH-1:0] Tests [0:MEM_SIZE]; // Space for input file logic [MEM_WIDTH-1:0] Vec; // Verilog doesn't allow direct access to a // bit field of an array logic [51:0] correctr, nextr; integer testnum, errors; // Divider srt srt(clk, req, a, b, rp, rm); // Final adder converts quotient digits to 2's complement & normalizes finaladd finaladd(rp, rm, r); // Counter counter counter(clk, req, done); initial forever begin clk = 1; #17; clk = 0; #16; end // Read test vectors from disk initial begin testnum = 0; errors = 0; $readmemh ("testvectors", Tests); Vec = Tests[testnum]; a = Vec[`mema]; b = Vec[`memb]; nextr = Vec[`memr]; req <= #5 1; end // Apply directed test vectors read from file. always @(posedge clk) begin if (done) begin req <= #5 1; $display("result was %h, should be %h\n", r, correctr); if ((correctr - r) > 1) // check if accurate to 1 ulp begin errors = errors+1; $display("failed\n"); $stop; end if (a === 52'hxxxxxxxxxxxxx) begin $display("Tests completed successfully"); $stop; end end if (req) begin req <= #5 0; correctr = nextr; testnum = testnum+1; Vec = Tests[testnum]; $display("a = %h b = %h",a,b); a = Vec[`mema]; b = Vec[`memb]; nextr = Vec[`memr]; end end endmodule