#include "sd.h" #include "spi.h" #include "uart.h" // Parallel byte update CRC7-CCITT algorithm. // The result is the CRC7 result, left shifted over by 1 // which is perfect, since we append a 1 at the end anyway uint8_t crc7(uint8_t prev, uint8_t in) { // CRC polynomial 0x89 uint8_t remainder = prev ^ in; remainder ^= (remainder >> 4) ^ (remainder >> 7); remainder = (remainder << 1) ^ (remainder << 4); return remainder & 0xff; } // Need to check this. This could be wrong as well. uint16_t crc16(uint16_t crc, uint8_t data) { // CRC polynomial 0x11021 crc = (uint8_t)(crc >> 8) | (crc << 8); crc ^= data; crc ^= (uint8_t)(crc >> 4) & 0xf; crc ^= crc << 12; crc ^= (crc & 0xff) << 5; return crc; } // sd_cmd ------------------------------------------------------------ // Sends SD card command using SPI mode. // This function: // * Chooses the response length based on the input command // * Makes use of SPI's full duplex. For every byte sent, // a byte is received. Thus for every byte sent as part of // a command, a useless byte must be read from the receive // FIFO. // * Takes advantage of the Sifive SPI peripheral spec's // watermark and interrupt features to determine when a // transfer is complete. This should save on cycles since // no arbitrary delays need to be added. uint64_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc) { uint8_t response_len; uint8_t i; uint64_t r; uint8_t rbyte; // Initialize the response with 0's. r = 0; // Choose response length based on cmd input. // Most commands return an R1 format response. switch (cmd) { case 8: response_len = R7_RESPONSE; break; case 12: response_len = R1B_RESPONSE; default: response_len = R1_RESPONSE; break; } // Make interrupt pending after response fifo receives the correct // response length. Probably unecessary so let's wait and see what // happens. // write_reg(SPI_RXMARK, response_len); // Write all 6 bytes into transfer fifo spi_sendbyte(0x40 | cmd); spi_sendbyte(arg >> 24); spi_sendbyte(arg >> 16); spi_sendbyte(arg >> 8); spi_sendbyte(arg); spi_sendbyte(crc); // Wait for command to send // The Transfer IP bit should go high when the txFIFO is empty // while(!(read_reg(SPI_IP) & 1)) {} waittx(); // Read the dummy rxFIFO entries to move the head back to the tail for (i = 0; i < 6; i++) { spi_readbyte(); } // Send "dummy signals". Since SPI is duplex, // useless bytes must be transferred for (i = 0; i < response_len; i++) { spi_sendbyte(0xFF); } // Wait for transfer fifo again waittx(); // Read rxfifo response for (i = 0; i < response_len; i++) { rbyte = spi_readbyte(); r = r | (rbyte << ((response_len - 1 - i)*8)); } return r; } // sd_cmd // Utility defines for CMD0, CMD8, CMD55, and ACMD41 #define CMD0() sd_cmd( 0, 0x00000000, 0x95) // Reset SD card into IDLE state #define CMD8() sd_cmd( 8, 0x000001aa, 0x87) // #define CMD55() sd_cmd(55, 0x00000000, 0x65) // #define ACMD41() sd_cmd(41, 0x40000000, 0x77) // // init_sd: ---------------------------------------------------------- // This first initializes the SPI peripheral then initializes the SD // card itself. We use the uart to display anything that goes wrong. void init_sd(){ init_spi(); uint64_t r; print_uart("Initializing SD Card in SPI mode"); // Reset SD Card command // Initializes SD card into SPI mode if CS is asserted '0' if (!(( r = CMD0() ) & 0x10) ) { print_uart("SD ERROR: "); print_uart_byte(r & 0xff); print_uart("\r\n"); } // if (!(( r = CMD8() ) & 0x10 )) { print_uart("SD ERROR: "); print_uart_byte(r & 0xff); print_uart("\r\n"); } do { CMD55(); r = ACMD41(); } while (r == 0x1); print_uart("SD card is initialized"); }