/////////////////////////////////////////// // mmu.sv // // Written: david_harris@hmc.edu and kmacsaigoren@hmc.edu 4 June 2021 // Modified: // // Purpose: Memory management unit, including TLB, PMA, PMP // // Documentation: RISC-V System on Chip Design // // A component of the CORE-V-WALLY configurable RISC-V project. // https://github.com/openhwgroup/cvw // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// module mmu import cvw::*; #(parameter cvw_t P, parameter TLB_ENTRIES = 8, IMMU = 0) ( input logic clk, reset, input logic [P.XLEN-1:0] SATP_REGW, // Current value of satp CSR (from privileged unit) input logic STATUS_MXR, // Status CSR: make executable page readable input logic STATUS_SUM, // Status CSR: Supervisor access to user memory input logic STATUS_MPRV, // Status CSR: modify machine privilege input logic [1:0] STATUS_MPP, // Status CSR: previous machine privilege level input logic ENVCFG_PBMTE, // Page-based memory types enabled input logic ENVCFG_ADUE, // HPTW A/D Update enable input logic [1:0] PrivilegeModeW, // Current privilege level of the processeor input logic DisableTranslation, // virtual address translation disabled during D$ flush and HPTW walk that use physical addresses input logic [P.XLEN+1:0] VAdr, // virtual/physical address from IEU or physical address from HPTW input logic [1:0] Size, // access size: 00 = 8 bits, 01 = 16 bits, 10 = 32 bits , 11 = 64 bits input logic [P.XLEN-1:0] PTE, // page table entry input logic [1:0] PageTypeWriteVal, // page type input logic TLBWrite, // write TLB entry input logic TLBFlush, // Invalidate all TLB entries output logic [P.PA_BITS-1:0] PhysicalAddress, // PAdr when no translation, or translated VAdr (TLBPAdr) when there is translation output logic TLBMiss, // Miss TLB output logic Cacheable, // PMA indicates memory address is cachable output logic Idempotent, // PMA indicates memory address is idempotent output logic SelTIM, // Select a tightly integrated memory // Faults output logic InstrAccessFaultF, LoadAccessFaultM, StoreAmoAccessFaultM, // access fault sources output logic InstrPageFaultF, LoadPageFaultM, StoreAmoPageFaultM, // page fault sources output logic UpdateDA, // page fault due to setting dirty or access bit output logic LoadMisalignedFaultM, StoreAmoMisalignedFaultM, // misaligned fault sources // PMA checker signals input logic [3:0] CMOpM, // Cache management instructions input logic AtomicAccessM, ExecuteAccessF, WriteAccessM, ReadAccessM, // access type input var logic [7:0] PMPCFG_ARRAY_REGW[P.PMP_ENTRIES-1:0], // PMP configuration input var logic [P.PA_BITS-3:0] PMPADDR_ARRAY_REGW[P.PMP_ENTRIES-1:0] // PMP addresses ); logic [P.PA_BITS-1:0] TLBPAdr; // physical address for TLB logic PMAInstrAccessFaultF; // Instruction access fault from PMA logic PMPInstrAccessFaultF; // Instruction access fault from PMP logic PMALoadAccessFaultM; // Load access fault from PMA logic PMPLoadAccessFaultM; // Load access fault from PMP logic PMAStoreAmoAccessFaultM; // Store or AMO access fault from PMA logic PMPStoreAmoAccessFaultM; // Store or AMO access fault from PMP logic DataMisalignedM; // load or store misaligned logic Translate; // Translation occurs when virtual memory is active and DisableTranslation is off logic TLBPageFault; // Page fault from TLB logic ReadNoAmoAccessM; // Read that is not part of atomic operation causes Load faults. Otherwise StoreAmo faults logic [1:0] PBMemoryType; // PBMT field of PTE during TLB hit, or 00 otherwise logic AmoMisalignedCausesAccessFaultM; // Misaligned AMO is not handled by hardware even with ZICCLSM, so it throws an access fault instead of misaligned with ZICCLSM logic AmoAccessM; // AMO access detected when ReadAccessM and WriteAccessM are simultaneously asserted // only instantiate TLB if Virtual Memory is supported if (P.VIRTMEM_SUPPORTED) begin:tlb logic ReadAccess, WriteAccess; assign ReadAccess = ExecuteAccessF | ReadAccessM; // execute also acts as a TLB read. Execute and Read are never active for the same MMU, so safe to mix pipestages assign WriteAccess = WriteAccessM; tlb #(.P(P), .TLB_ENTRIES(TLB_ENTRIES), .ITLB(IMMU)) tlb( .clk, .reset, .SATP_MODE(SATP_REGW[P.XLEN-1:P.XLEN-P.SVMODE_BITS]), .SATP_ASID(SATP_REGW[P.ASID_BASE+P.ASID_BITS-1:P.ASID_BASE]), .VAdr(VAdr[P.XLEN-1:0]), .STATUS_MXR, .STATUS_SUM, .STATUS_MPRV, .STATUS_MPP, .ENVCFG_PBMTE, .ENVCFG_ADUE, .PrivilegeModeW, .ReadAccess, .WriteAccess, .CMOpM, .DisableTranslation, .PTE, .PageTypeWriteVal, .TLBWrite, .TLBFlush, .TLBPAdr, .TLBMiss, .Translate, .TLBPageFault, .UpdateDA, .PBMemoryType); end else begin:tlb // just pass address through as physical assign Translate = 1'b0; assign TLBMiss = 1'b0; assign TLBPageFault = 1'b0; assign PBMemoryType = 2'b00; assign UpdateDA = 1'b0; assign TLBPAdr = '0; end // If translation is occuring, select translated physical address from TLB // the lower 12 bits are the page offset. These are never changed from the orginal // non translated address. mux2 #(P.PA_BITS-12) addressmux(VAdr[P.PA_BITS-1:12], TLBPAdr[P.PA_BITS-1:12], Translate, PhysicalAddress[P.PA_BITS-1:12]); assign PhysicalAddress[11:0] = VAdr[11:0]; /////////////////////////////////////////// // Check physical memory accesses /////////////////////////////////////////// pmachecker #(P) pmachecker(.PhysicalAddress, .Size, .CMOpM, .AtomicAccessM, .ExecuteAccessF, .WriteAccessM, .ReadAccessM, .PBMemoryType, .Cacheable, .Idempotent, .SelTIM, .PMAInstrAccessFaultF, .PMALoadAccessFaultM, .PMAStoreAmoAccessFaultM); if (P.PMP_ENTRIES > 0) begin : pmp pmpchecker #(P) pmpchecker(.PhysicalAddress, .PrivilegeModeW, .PMPCFG_ARRAY_REGW, .PMPADDR_ARRAY_REGW, .ExecuteAccessF, .WriteAccessM, .ReadAccessM, .CMOpM, .PMPInstrAccessFaultF, .PMPLoadAccessFaultM, .PMPStoreAmoAccessFaultM); end else begin assign PMPInstrAccessFaultF = 1'b0; assign PMPStoreAmoAccessFaultM = 1'b0; assign PMPLoadAccessFaultM = 1'b0; end assign ReadNoAmoAccessM = ReadAccessM & ~WriteAccessM;// AMO causes StoreAmo rather than Load fault assign AmoAccessM = ReadAccessM & WriteAccessM; // Misaligned faults always_comb // exclusion-tag: immu-wordaccess case(Size[1:0]) 2'b00: DataMisalignedM = 1'b0; // lb, sb, lbu 2'b01: DataMisalignedM = VAdr[0]; // lh, sh, lhu 2'b10: DataMisalignedM = VAdr[1] | VAdr[0]; // lw, sw, flw, fsw, lwu 2'b11: DataMisalignedM = |VAdr[2:0]; // ld, sd, fld, fsd endcase // When ZiCCLSM_SUPPORTED, misalgined cachable loads and stores are handled in hardware so they do not throw a misaligned fault assign LoadMisalignedFaultM = DataMisalignedM & ReadNoAmoAccessM & ~(P.ZICCLSM_SUPPORTED & Cacheable); assign StoreAmoMisalignedFaultM = DataMisalignedM & WriteAccessM & ~(P.ZICCLSM_SUPPORTED & Cacheable); // Store and AMO both assert WriteAccess // Access faults // If TLB miss and translating we want to not have faults from the PMA and PMP checkers. assign InstrAccessFaultF = (PMAInstrAccessFaultF | PMPInstrAccessFaultF) & ~TLBMiss; assign LoadAccessFaultM = (PMALoadAccessFaultM | PMPLoadAccessFaultM) & ~TLBMiss; // a misaligned AMO causes an access fault rather than a misaligned fault if a misaligned load/store is handled in hardware // this is subtle - see privileged spec 3.6.3.3 // AMO is detected as ReadAccess & WriteAccess assign AmoMisalignedCausesAccessFaultM = DataMisalignedM & AmoAccessM & (P.ZICCLSM_SUPPORTED & Cacheable); assign StoreAmoAccessFaultM = (PMAStoreAmoAccessFaultM | PMPStoreAmoAccessFaultM | AmoMisalignedCausesAccessFaultM) & ~TLBMiss; // Specify which type of page fault is occurring assign InstrPageFaultF = TLBPageFault & ExecuteAccessF; assign LoadPageFaultM = TLBPageFault & ReadNoAmoAccessM; assign StoreAmoPageFaultM = TLBPageFault & (WriteAccessM | (|CMOpM)); endmodule