/////////////////////////////////////////// // fdivsqrtpostproc.sv // // Written: David_Harris@hmc.edu, me@KatherineParry.com, cturek@hmc.edu // Modified:13 January 2022 // // Purpose: Divide/Square root postprocessing // // Documentation: RISC-V System on Chip Design Chapter 13 // // A component of the CORE-V-WALLY configurable RISC-V project. // // Copyright (C) 2021-23 Harvey Mudd College & Oklahoma State University // // SPDX-License-Identifier: Apache-2.0 WITH SHL-2.1 // // Licensed under the Solderpad Hardware License v 2.1 (the “License”); you may not use this file // except in compliance with the License, or, at your option, the Apache License version 2.0. You // may obtain a copy of the License at // // https://solderpad.org/licenses/SHL-2.1/ // // Unless required by applicable law or agreed to in writing, any work distributed under the // License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, // either express or implied. See the License for the specific language governing permissions // and limitations under the License. //////////////////////////////////////////////////////////////////////////////////////////////// `include "wally-config.vh" module fdivsqrtpostproc( input logic clk, reset, input logic StallM, input logic [`DIVb+3:0] WS, WC, input logic [`DIVb-1:0] D, input logic [`DIVb:0] FirstU, FirstUM, input logic [`DIVb+1:0] FirstC, input logic SqrtE, input logic Firstun, SqrtM, SpecialCaseM, NegQuotM, input logic [`XLEN-1:0] AM, input logic RemOpM, ALTBM, BZeroM, AsM, W64M, input logic [`DIVBLEN:0] nM, mM, output logic [`DIVb:0] QmM, output logic WZeroE, output logic DivStickyM, output logic [`XLEN-1:0] FIntDivResultM ); logic [`DIVb+3:0] W, Sum, DM; logic [`DIVb:0] PreQmM; logic NegStickyM; logic weq0E, WZeroM; logic [`XLEN-1:0] IntDivResultM; ////////////////////////// // Execute Stage: Detect early termination for an exact result ////////////////////////// // check for early termination on an exact result. aplusbeq0 #(`DIVb+4) wspluswceq0(WS, WC, weq0E); if (`RADIX == 2) begin: R2EarlyTerm logic [`DIVb+3:0] FZeroE, FZeroSqrtE, FZeroDivE; logic [`DIVb+2:0] FirstK; logic wfeq0E; logic [`DIVb+3:0] WCF, WSF; assign FirstK = ({1'b1, FirstC} & ~({1'b1, FirstC} << 1)); assign FZeroSqrtE = {FirstUM[`DIVb], FirstUM, 2'b0} | {FirstK,1'b0}; // F for square root assign FZeroDivE = {3'b001,D,1'b0}; // F for divide mux2 #(`DIVb+4) fzeromux(FZeroDivE, FZeroSqrtE, SqrtE, FZeroE); csa #(`DIVb+4) fadd(WS, WC, FZeroE, 1'b0, WSF, WCF); // compute {WCF, WSF} = {WS + WC + FZero}; aplusbeq0 #(`DIVb+4) wcfpluswsfeq0(WCF, WSF, wfeq0E); assign WZeroE = weq0E|(wfeq0E & Firstun); end else begin assign WZeroE = weq0E; end ////////////////////////// // E/M Pipeline register ////////////////////////// flopenr #(1) WZeroMReg(clk, reset, ~StallM, WZeroE, WZeroM); ////////////////////////// // Memory Stage: Postprocessing ////////////////////////// // If the result is not exact, the sticky should be set assign DivStickyM = ~WZeroM & ~(SpecialCaseM & SqrtM); // ***unsure why SpecialCaseM has to be gated by SqrtM, but otherwise fails regression on divide // Determine if sticky bit is negative // *** look for ways to optimize this. Shift shouldn't be needed. assign Sum = WC + WS; assign NegStickyM = Sum[`DIVb+3]; mux2 #(`DIVb+1) preqmmux(FirstU, FirstUM, NegStickyM, PreQmM); // Select U or U-1 depending on negative sticky bit mux2 #(`DIVb+1) qmmux(PreQmM, (PreQmM << 1), SqrtM, QmM); // Integer quotient or remainder correctoin, normalization, and special cases if (`IDIV_ON_FPU) begin:intpostproc // Int supported logic [`DIVBLEN:0] NormShiftM; logic [`DIVb+3:0] UnsignedQuotM, NormRemM, NormRemDM, NormQuotM; logic signed [`DIVb+3:0] PreResultM, PreIntResultM; assign W = $signed(Sum) >>> `LOGR; assign DM = {4'b0001, D}; assign UnsignedQuotM = {3'b000, PreQmM}; // Integer remainder: sticky and sign correction muxes mux2 #(`DIVb+4) normremdmux(W, W+DM, NegStickyM, NormRemDM); mux2 #(`DIVb+4) normremsmux(NormRemDM, -NormRemDM, AsM, NormRemM); mux2 #(`DIVb+4) quotresmux(UnsignedQuotM, -UnsignedQuotM, NegQuotM, NormQuotM); // Select quotient or remainder and do normalization shift mux2 #(`DIVBLEN+1) normshiftmux(((`DIVBLEN+1)'(`DIVb) - (nM * (`DIVBLEN+1)'(`LOGR))), (mM + (`DIVBLEN+1)'(`DIVa)), RemOpM, NormShiftM); mux2 #(`DIVb+4) presresultmux(NormQuotM, NormRemM, RemOpM, PreResultM); assign PreIntResultM = $signed(PreResultM >>> NormShiftM); // special case logic // terminates immediately when B is Zero (div 0) or |A| has more leading 0s than |B| always_comb if (BZeroM) begin // Divide by zero if (RemOpM) IntDivResultM = AM; else IntDivResultM = {(`XLEN){1'b1}}; end else if (ALTBM) begin // Numerator is zero if (RemOpM) IntDivResultM = AM; else IntDivResultM = '0; end else IntDivResultM = PreIntResultM[`XLEN-1:0]; // sign extend result for W64 if (`XLEN==64) begin mux2 #(64) resmux(IntDivResultM[`XLEN-1:0], {{(`XLEN-32){IntDivResultM[31]}}, IntDivResultM[31:0]}, // Sign extending in case of W64 W64M, FIntDivResultM); end else assign FIntDivResultM = IntDivResultM[`XLEN-1:0]; end endmodule