#!/usr/bin/env python3 # # Python regression test for DC # Madeleine Masser-Frye mmasserfrye@hmc.edu 5/22 # James Stine james.stine@okstate.edu 15 October 2023 # import scipy.optimize as opt import subprocess import csv import re from matplotlib.cbook import flatten import matplotlib.pyplot as plt import matplotlib.lines as lines import matplotlib as mpl import numpy as np from collections import namedtuple import sklearn.metrics as skm # depricated, will need to replace with scikit-learn import os def synthsfromcsv(filename): Synth = namedtuple("Synth", "module tech width freq delay area lpower denergy") with open(filename, newline="") as csvfile: csvreader = csv.reader(csvfile) global allSynths allSynths = list(csvreader)[1:] for i in range(len(allSynths)): for j in range(len(allSynths[0])): try: allSynths[i][j] = int(allSynths[i][j]) except: try: allSynths[i][j] = float(allSynths[i][j]) except: pass allSynths[i] = Synth(*allSynths[i]) return allSynths def synthsintocsv(): """writes a CSV with one line for every available synthesis each line contains the module, tech, width, target freq, and resulting metrics """ print("This takes a moment...") bashCommand = "find . -path '*runs/*' -prune" output = subprocess.check_output(["bash", "-c", bashCommand]) allSynths = output.decode("utf-8").split("\n")[:-1] specReg = re.compile("[a-zA-Z0-9]+") metricReg = re.compile("-?\d+\.\d+[e]?[-+]?\d*") file = open("ppaData.csv", "w") writer = csv.writer(file) writer.writerow( [ "Module", "Tech", "Width", "Target Freq", "Delay", "Area", "L Power (nW)", "D energy (nJ)", ] ) for oneSynth in allSynths: module, width, risc, tech, freq = specReg.findall(oneSynth)[1:6] tech = tech[:-2] metrics = [] for phrase in [["Path Slack", "qor"], ["Design Area", "qor"], ["100", "power"]]: bashCommand = 'grep "{}" ' + oneSynth[2:] + "/reports/*{}*" bashCommand = bashCommand.format(*phrase) try: output = subprocess.check_output(["bash", "-c", bashCommand]) except: print(module + width + tech + freq + " doesn't have reports") print("Consider running cleanup() first") nums = metricReg.findall(str(output)) nums = [float(m) for m in nums] metrics += nums delay = 1000 / int(freq) - metrics[0] area = metrics[1] lpower = metrics[4] tpower = (metrics[2] + metrics[3] + metrics[4]*.000001) denergy = ( (tpower) / int(freq) * 1000 ) # (switching + internal powers)*delay, more practical units for regression coefs if "flop" in module: # since two flops in each module [area, lpower, denergy] = [n / 2 for n in [area, lpower, denergy]] writer.writerow([module, tech, width, freq, delay, area, lpower, denergy]) file.close() def cleanup(): """removes runs that didn't work""" bashCommand = 'grep -r "Error" runs/ppa*/reports/*qor*' try: output = subprocess.check_output(["bash", "-c", bashCommand]) allSynths = output.decode("utf-8").split("\n")[:-1] for run in allSynths: run = run.split("MHz")[0] bc = "rm -r " + run + "*" output = subprocess.check_output(["bash", "-c", bc]) except: pass bashCommand = "find . -path '*runs/*' -prune" output = subprocess.check_output(["bash", "-c", bashCommand]) allSynths = output.decode("utf-8").split("\n")[:-1] for oneSynth in allSynths: for phrase in [["Path Length", "qor"]]: bashCommand = 'grep "{}" ' + oneSynth[2:] + "/reports/*{}*" bashCommand = bashCommand.format(*phrase) try: output = subprocess.check_output(["bash", "-c", bashCommand]) except: bc = "rm -r " + oneSynth[2:] output = subprocess.check_output(["bash", "-c", bc]) print("All cleaned up!") def getVals(tech, module, var, freq=None, width=None): """for a specified tech, module, and variable/metric returns a list of values for that metric in ascending width order works at a specified target frequency or if none is given, uses the synthesis with the best achievable delay for each width """ if width != None: widthsToGet = width else: widthsToGet = widths metric = [] widthL = [] if freq != None: for oneSynth in allSynths: if ( (oneSynth.freq == freq) & (oneSynth.tech == tech) & (oneSynth.module == module) & (oneSynth.width != 1) ): widthL += [oneSynth.width] osdict = oneSynth._asdict() metric += [osdict[var]] metric = [x for _, x in sorted(zip(widthL, metric))] # ordering else: for w in widthsToGet: for oneSynth in bestSynths: if ( (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == module) ): osdict = oneSynth._asdict() met = osdict[var] metric += [met] return metric def csvOfBest(filename): bestSynths = [] for tech in [x.tech for x in techSpecs]: for mod in modules: for w in widths: m = np.Inf # large number to start best = None for oneSynth in allSynths: # best achievable, rightmost green if ( (oneSynth.width == w) & (oneSynth.tech == tech) & (oneSynth.module == mod) ): if (oneSynth.delay < m) & ( 1000 / oneSynth.delay > oneSynth.freq ): m = oneSynth.delay best = oneSynth if (best != None) & (best not in bestSynths): bestSynths += [best] file = open(filename, "w") writer = csv.writer(file) writer.writerow( [ "Module", "Tech", "Width", "Target Freq", "Delay", "Area", "L Power (nW)", "D energy (nJ)", ] ) for synth in bestSynths: writer.writerow(list(synth)) file.close() return bestSynths def genLegend(fits, coefs, r2=None, spec=None, ale=False): """generates a list of two legend elements (or just an equation if no r2 or spec) labels line with fit equation and dots with r squared of the fit """ coefsr = [str(sigfig(c, 2)) for c in coefs] if ale: if normAddWidth == 32: sub = "S" elif normAddWidth != 1: print("Equations are wrong, check normAddWidth") else: sub = "N" eqDict = { "c": "", "l": sub, "s": "$" + sub + "^2$", "g": "$log_2$(" + sub + ")", "n": "" + sub + "$log_2$(" + sub + ")", } eq = "" ind = 0 for k in eqDict.keys(): if k in fits: if str(coefsr[ind]) != "0": eq += " + " + coefsr[ind] + eqDict[k] ind += 1 eq = eq[3:] # chop off leading ' + ' if (r2 == None) or (spec == None): return eq else: legend_elements = [lines.Line2D([0], [0], color=spec.color, label=eq)] legend_elements += [ lines.Line2D( [0], [0], color=spec.color, ls="", marker=spec.shape, label="$R^2$=" + str(round(r2, 4)), ) ] return legend_elements def oneMetricPlot( module, widths, var, freq=None, ax=None, fits="clsgn", norm=True, color=None ): """module: string module name freq: int freq (MHz) var: string delay, area, lpower, or denergy fits: constant, linear, square, log2, Nlog2 plots given variable vs width for all matching syntheses with regression """ singlePlot = True if ax or (freq == 10): singlePlot = False if ax is None: ax = plt.gca() fullLeg = [] allWidths = [] allMetrics = [] ale = var != "delay" # if not delay, must be area, leakage, or energy modFit = fitDict[module] fits = modFit[ale] if freq: ls = "--" else: ls = "-" for spec in techSpecs: # print(f"Searching for module of spec {spec} and module {module} and var {var}") metric = getVals(spec.tech, module, var, freq=freq) # print(f"Found metric : {metric}") if norm: techdict = spec._asdict() norm = techdict[var] metric = [m / norm for m in metric] if len(widths) == len(metric): # don't include the spec if we don't have points for all widths # print(f"Width \neq Metric") xp, pred, coefs, r2 = regress(widths, metric, fits, ale) fullLeg += genLegend(fits, coefs, r2, spec, ale=ale) c = color if color else spec.color ax.scatter(widths, metric, color=c, marker=spec.shape) ax.plot(xp, pred, color=c, linestyle=ls) allWidths += widths allMetrics += metric # print(f"Widths passed into regress : {allWidths}") if len(allWidths) > 0: xp, pred, coefs, r2 = regress(allWidths, allMetrics, fits) ax.plot(xp, pred, color="orange", linestyle=ls) else: xp, pred, coefs, r2 = regress(widths, metric, fits) ax.plot(xp, pred, color="orange", linestyle=ls) if norm: ylabeldic = { "lpower": "Leakage Power (add32)", "denergy": "Energy/Op (add32)", "area": "Area (add32)", "delay": "Delay (FO4)", } else: ylabeldic = { "lpower": "Leakage Power (nW)", "denergy": "Dynamic Energy (nJ)", "area": "Area (sq microns)", "delay": "Delay (ns)", } ax.set_ylabel(ylabeldic[var]) ax.set_xticks(widths) if singlePlot or (var == "lpower") or (var == "denergy"): ax.set_xlabel("Width (bits)") if not singlePlot and ((var == "delay") or (var == "area")): ax.tick_params(labelbottom=False) if singlePlot: fullLeg += genLegend(fits, coefs, r2, combined, ale=ale) legLoc = "upper left" if ale else "center right" ax.add_artist(ax.legend(handles=fullLeg, loc=legLoc)) titleStr = ( " (target " + str(freq) + "MHz)" if freq != None else " (best achievable delay)" ) ax.set_title(module + titleStr) plt.savefig(".plots/" + module + "_" + var + ".png") # plt.show() return r2 def regress(widths, var, fits="clsgn", ale=False): """fits a curve to the given points returns lists of x and y values to plot that curve and coefs for the eq with r2 """ if len(var) != len(widths): # print( # f"There are not enough variables to match widths. Widths : {widths} Variables Found : {var}, padding to match may affect correctness (doing it anyways)\n" # ) if len(widths) > len(var): while len(widths) > len(var): var.append(0.0) if len(var) > len(widths): while len(var) > len(widths): widths.append(0) # widths = [8, 16, 32, 64, 128] # print(f"Regress var : {var}") # print(f"Regress widths : {widths}") funcArr = genFuncs(fits) xp = np.linspace(min(widths) / 2, max(widths) * 1.1, 200) xpToCalc = xp if ale: widths = [w / normAddWidth for w in widths] xpToCalc = [x / normAddWidth for x in xp] mat = [] for w in widths: row = [] for func in funcArr: row += [func(w)] mat += [row] # var = [0, 1, 2, 3, 4] y = np.array(var, dtype=np.float64) coefs = opt.nnls(mat, y)[0] yp = [] for w in widths: n = [func(w) for func in funcArr] yp += [sum(np.multiply(coefs, n))] r2 = skm.r2_score(y, yp) pred = [] for x in xpToCalc: n = [func(x) for func in funcArr] pred += [sum(np.multiply(coefs, n))] return xp, pred, coefs, r2 def makeCoefTable(): """writes CSV with each line containing the coefficients for a regression fit to a particular combination of module, metric (including both techs, normalized) """ file = open("ppaFitting.csv", "w") writer = csv.writer(file) writer.writerow( ["Module", "Metric", "Target", "1", "N", "N^2", "log2(N)", "Nlog2(N)", "R^2"] ) for module in modules: for freq in [10, None]: target = "easy" if freq else "hard" for var in ["delay", "area", "lpower", "denergy"]: ale = var != "delay" metL = [] modFit = fitDict[module] fits = modFit[ale] for spec in techSpecs: metric = getVals(spec.tech, module, var, freq=freq) techdict = spec._asdict() norm = techdict[var] metL += [m / norm for m in metric] xp, pred, coefs, r2 = regress(widths * 2, metL, fits, ale) coefs = np.ndarray.tolist(coefs) coefsToWrite = [None] * 5 fitTerms = "clsgn" ind = 0 for i in range(len(fitTerms)): if fitTerms[i] in fits: coefsToWrite[i] = coefs[ind] ind += 1 row = [module, var, target] + coefsToWrite + [r2] writer.writerow(row) file.close() def sigfig(num, figs): return "{:g}".format(float("{:.{p}g}".format(num, p=figs))) def makeEqTable(): """writes CSV with each line containing the equations for fits for each metric to a particular module (including both techs, normalized) """ file = open("ppaEquations.csv", "w") writer = csv.writer(file) writer.writerow( [ "Element", "Best delay", "Fast area", "Fast leakage", "Fast energy", "Small area", "Small leakage", "Small energy", ] ) for module in modules: eqs = [] for freq in [None, 10]: for var in ["delay", "area", "lpower", "denergy"]: if (var == "delay") and (freq == 10): pass else: ale = var != "delay" metL = [] modFit = fitDict[module] fits = modFit[ale] for spec in techSpecs: metric = getVals(spec.tech, module, var, freq=freq) techdict = spec._asdict() norm = techdict[var] metL += [m / norm for m in metric] xp, pred, coefs, r2 = regress(widths * 2, metL, fits, ale) coefs = np.ndarray.tolist(coefs) eqs += [genLegend(fits, coefs, ale=ale)] row = [module] + eqs writer.writerow(row) file.close() def genFuncs(fits="clsgn"): """helper function for regress() returns array of functions with one for each term desired in the regression fit """ funcArr = [] if "c" in fits: funcArr += [lambda x: 1] if "l" in fits: funcArr += [lambda x: x] if "s" in fits: funcArr += [lambda x: x**2] if "g" in fits: funcArr += [lambda x: np.log2(x)] if "n" in fits: funcArr += [lambda x: x * np.log2(x)] return funcArr def noOutliers(median, freqs, delays, areas): """returns a pared down list of freqs, delays, and areas cuts out any syntheses in which target freq isn't within 75% of the min delay target to focus on interesting area helper function to freqPlot() """ f = [] d = [] a = [] for i in range(len(freqs)): norm = freqs[i] / median if (norm > 0.4) & (norm < 1.4): f += [freqs[i]] d += [delays[i]] a += [areas[i]] return f, d, a def freqPlot(tech, mod, width): """plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width""" freqsL, delaysL, areasL = ([[], []] for i in range(3)) for oneSynth in allSynths: if ( (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech) ): ind = ( 1000 / oneSynth.delay < oneSynth.freq ) # when delay is within target clock period freqsL[ind] += [oneSynth.freq] delaysL[ind] += [oneSynth.delay] areasL[ind] += [oneSynth.area] median = np.median(list(flatten(freqsL))) f, (ax1, ax2) = plt.subplots(2, 1, sharex=True) for ax in (ax1, ax2): ax.ticklabel_format(useOffset=False, style="plain") for ind in [0, 1]: areas = areasL[ind] delays = delaysL[ind] freqs = freqsL[ind] freqs, delays, areas = noOutliers( median, freqs, delays, areas ) # comment out to see all syntheses c = "blue" if ind else "green" ax1.scatter(freqs, delays, color=c) ax2.scatter(freqs, areas, color=c) legend_elements = [ lines.Line2D( [0], [0], color="green", ls="", marker="o", label="timing achieved" ), lines.Line2D([0], [0], color="blue", ls="", marker="o", label="slack violated"), ] ax1.legend(handles=legend_elements) width = str(width) ax2.set_xlabel("Target Freq (MHz)") ax1.set_ylabel("Delay (ns)") ax2.set_ylabel("Area (sq microns)") ax1.set_title(mod + "_" + width) if ("mux" in mod) & ("d" in mod): width = mod mod = "muxd" plt.savefig("./plots/freqBuckshot/" + tech + "/" + mod + "/" + width + ".png") # plt.show() def squareAreaDelay(tech, mod, width): """plots delay, area, area*delay, and area*delay^2 for syntheses with specified tech, module, width""" global allSynths freqsL, delaysL, areasL = ([[], []] for i in range(3)) for oneSynth in allSynths: if ( (mod == oneSynth.module) & (width == oneSynth.width) & (tech == oneSynth.tech) ): ind = ( 1000 / oneSynth.delay < oneSynth.freq ) # when delay is within target clock period freqsL[ind] += [oneSynth.freq] delaysL[ind] += [oneSynth.delay] areasL[ind] += [oneSynth.area] f, (ax1) = plt.subplots(1, 1) ax2 = ax1.twinx() for ind in [0, 1]: areas = areasL[ind] delays = delaysL[ind] targets = freqsL[ind] targets = [1000 / f for f in targets] targets, delays, areas = noOutliers( targets, delays, areas ) # comment out to see all if not ind: achievedDelays = delays c = "blue" if ind else "green" ax1.scatter(targets, delays, marker="^", color=c) ax2.scatter(targets, areas, marker="s", color=c) bestAchieved = min(achievedDelays) legend_elements = [ lines.Line2D( [0], [0], color="green", ls="", marker="^", label="delay (timing achieved)" ), lines.Line2D( [0], [0], color="green", ls="", marker="s", label="area (timing achieved)" ), lines.Line2D( [0], [0], color="blue", ls="", marker="^", label="delay (timing violated)" ), lines.Line2D( [0], [0], color="blue", ls="", marker="s", label="area (timing violated)" ), ] ax2.legend(handles=legend_elements, loc="upper left") ax1.set_xlabel("Delay Targeted (ns)") ax1.set_ylabel("Delay Achieved (ns)") ax2.set_ylabel("Area (sq microns)") ax1.set_title(mod + "_" + str(width)) squarify(f) xvals = np.array(ax1.get_xlim()) frac = (min(flatten(delaysL)) - xvals[0]) / (xvals[1] - xvals[0]) areaLowerLim = min(flatten(areasL)) - 100 areaUpperLim = max(flatten(areasL)) / frac + areaLowerLim ax2.set_ylim([areaLowerLim, areaUpperLim]) ax1.plot(xvals, xvals, ls="--", c=".3") ax1.hlines(y=bestAchieved, xmin=xvals[0], xmax=xvals[1], color="black", ls="--") plt.savefig("./plots/squareareadelay_" + mod + "_" + str(width) + ".png") # plt.show() def squarify(fig): """helper function for squareAreaDelay() forces matplotlib figure to be a square """ w, h = fig.get_size_inches() if w > h: t = fig.subplotpars.top b = fig.subplotpars.bottom axs = h * (t - b) l = (1.0 - axs / w) / 2 fig.subplots_adjust(left=l, right=1 - l) else: t = fig.subplotpars.right b = fig.subplotpars.left axs = w * (t - b) l = (1.0 - axs / h) / 2 fig.subplots_adjust(bottom=l, top=1 - l) def plotPPA(mod, freq=None, norm=True, aleOpt=False): """for the module specified, plots width vs delay, area, leakage power, and dynamic energy with fits if no freq specified, uses the synthesis with best achievable delay for each width overlays data from both techs """ with mpl.rc_context({"figure.figsize": (7, 3.46)}): fig, axs = plt.subplots(2, 2) arr = [["delay", "area"], ["lpower", "denergy"]] freqs = [freq] if aleOpt: freqs += [10] for i in [0, 1]: for j in [0, 1]: leg = [] for f in freqs: if (arr[i][j] == "delay") and (f == 10): pass else: # print(f"Pasing in widths {widths}") r2 = oneMetricPlot( mod, widths, arr[i][j], ax=axs[i, j], freq=f, norm=norm ) ls = "--" if f else "-" leg += [ lines.Line2D( [0], [0], color="orange", label="$R^2$=" + str(round(r2, 4)), linestyle=ls, ) ] if (mod in ["flop", "csa"]) & (arr[i][j] == "delay"): axs[i, j].set_ylim(ymin=0) ytop = axs[i, j].get_ylim()[1] axs[i, j].set_ylim(ymax=1.1 * ytop) else: axs[i, j].legend(handles=leg, handlelength=1.5) titleStr = " (target " + str(freq) + "MHz)" if freq != None else "" plt.suptitle(mod + titleStr) plt.tight_layout(pad=0.05, w_pad=1, h_pad=0.5, rect=(0, 0, 1, 0.97)) if freq != 10: n = "normalized" if norm else "unnormalized" saveStr = "./plots/" + n + "/" + mod + "_" + ".png" print(f"Saving to {saveStr}") plt.savefig(saveStr) # plt.show() def makeLineLegend(): """generates legend to accompany normalized plots""" plt.rcParams["figure.figsize"] = (5.5, 0.3) fig = plt.figure() fullLeg = [lines.Line2D([0], [0], color="black", label="fastest", linestyle="-")] fullLeg += [lines.Line2D([0], [0], color="black", label="smallest", linestyle="--")] fullLeg += [lines.Line2D([0], [0], color="blue", label="tsmc28", marker="^")] fullLeg += [lines.Line2D([0], [0], color="blue", label="tsmc28psyn", marker="x")] fullLeg += [lines.Line2D([0], [0], color="green", label="sky90", marker="o")] fullLeg += [lines.Line2D([0], [0], color="purple", label="sky130", marker="+")] fullLeg += [lines.Line2D([0], [0], color="orange", label="combined", marker="_")] fig.legend(handles=fullLeg, ncol=5, handlelength=1.4, loc="center") saveStr = "./plots/legend.png" plt.savefig(saveStr) def muxPlot(fits="clsgn", norm=True): """module: string module name freq: int freq (MHz) var: string delay, area, lpower, or denergy fits: constant, linear, square, log2, Nlog2 plots given variable vs width for all matching syntheses with regression """ ax = plt.gca() inputs = [2, 4, 8] allInputs = inputs * 2 fullLeg = [] for crit in ["data", "control"]: allMetrics = [] muxes = ["mux2", "mux4", "mux8"] if crit == "data": ls = "--" muxes = [m + "d" for m in muxes] elif crit == "control": ls = "-" for spec in techSpecs: metric = [] for module in muxes: metric += getVals(spec.tech, module, "delay", width=[1]) if norm: techdict = spec._asdict() norm = techdict["delay"] metric = [m / norm for m in metric] # print(spec.tech, ' ', metric) if ( len(metric) == 3 ): # don't include the spec if we don't have points for all xp, pred, coefs, r2 = regress(inputs, metric, fits, ale=False) ax.scatter(inputs, metric, color=spec.color, marker=spec.shape) ax.plot(xp, pred, color=spec.color, linestyle=ls) allMetrics += metric xp, pred, coefs, r2 = regress(allInputs, allMetrics, fits) ax.plot(xp, pred, color="red", linestyle=ls) fullLeg += [lines.Line2D([0], [0], color="red", label=crit, linestyle=ls)] ax.set_ylabel("Delay (FO4)") ax.set_xticks(inputs) ax.set_xlabel("Number of inputs") ax.set_title("mux timing") ax.legend(handles=fullLeg) plt.savefig("./plots/mux.png") def stdDevError(): """calculates std deviation and error for paper-writing purposes""" for var in ["delay", "area", "lpower", "denergy"]: errlist = [] for module in modules: ale = var != "delay" metL = [] modFit = fitDict[module] fits = modFit[ale] funcArr = genFuncs(fits) for spec in techSpecs: metric = getVals(spec.tech, module, var) techdict = spec._asdict() norm = techdict[var] metL += [m / norm for m in metric] if ale: ws = [w / normAddWidth for w in widths] else: ws = widths ws = ws * 2 mat = [] for w in ws: row = [] for func in funcArr: row += [func(w)] mat += [row] y = np.array(metL, dtype=np.float) coefs = opt.nnls(mat, y)[0] yp = [] for w in ws: n = [func(w) for func in funcArr] yp += [sum(np.multiply(coefs, n))] if (var == "delay") & (module == "flop"): pass elif (module == "mult") & ale: pass else: for i in range(len(y)): errlist += [abs(y[i] / yp[i] - 1)] # print(module, ' ', var, ' ', np.mean(errlist[-10:])) avgErr = np.mean(errlist) stdv = np.std(errlist) print(var, " ", avgErr, " ", stdv) def makePlotDirectory(): """creates plots directory in same level as this script to store plots in""" current_directory = os.getcwd() final_directory = os.path.join(current_directory, "plots") if not os.path.exists(final_directory): os.makedirs(final_directory) os.chdir(final_directory) for folder in ["freqBuckshot", "normalized", "unnormalized"]: new_directory = os.path.join(final_directory, folder) if not os.path.exists(new_directory): os.makedirs(new_directory) os.chdir(new_directory) if "freq" in folder: for tech in ["sky90", "sky130", "tsmc28", "tsmc28psyn"]: for mod in modules: tech_directory = os.path.join(new_directory, tech) mod_directory = os.path.join(tech_directory, mod) if not os.path.exists(mod_directory): os.makedirs(mod_directory) os.chdir("..") os.chdir(current_directory) if __name__ == "__main__": ############################## # set up stuff, global variables widths = [8, 16, 32, 64, 128] modules = ["adder"] normAddWidth = 32 # divisor to use with N since normalizing to add_32 fitDict = { "adder": ["cg", "l", "l"], "mul": ["cg", "s", "s"], "comparator": ["cg", "l", "l"], "csa": ["c", "l", "l"], "shifter": ["cg", "l", "ln"], "flop": ["c", "l", "l"], "binencoder": ["cg", "l", "l"], } fitDict.update(dict.fromkeys(["mux2", "mux4", "mux8"], ["cg", "l", "l"])) TechSpec = namedtuple("TechSpec", "tech color shape delay area lpower denergy") # FO4 delay information information techSpecs = [ #["sky90", "green", "o", 43.2e-3, 1440.600027, 714.057, 0.658022690438], # Area/Lpower/Denergy needs to be corrected here (jes) ["sky130", "orange", "o", 99.5e-3, 1440.600027, 714.057, 0.658022690438], # ["tsmc28", "blue", "^", 12.2e-3, 209.286002, 1060.0, 0.08153281695882594], # ["tsmc28psyn", "blue", "^", 12.2e-3, 209.286002, 1060.0, 0.08153281695882594], ] techSpecs = [TechSpec(*t) for t in techSpecs] combined = TechSpec("combined fit", "red", "_", 0, 0, 0, 0) ############################## # cleanup() # run to remove garbage synth runs synthsintocsv() # slow, run only when new synth runs to add to csv allSynths = synthsfromcsv("ppaData.csv") # your csv here! bestSynths = csvOfBest("bestSynths.csv") makePlotDirectory() # ### other functions # makeCoefTable() # makeEqTable() # muxPlot() # stdDevError() for mod in modules: for w in widths: #freqPlot('sky90', mod, w) freqPlot("sky130", mod, w) # freqPlot('tsmc28', mod, w) # freqPlot('tsmc28psyn', mod, w) plotPPA(mod, norm=False) plotPPA(mod, aleOpt=True) plt.close("all")