/////////////////////////////////////////// // hptw.sv // // Written: tfleming@hmc.edu 2 March 2021 // Modified: david_harris@hmc.edu 18 July 2021 cleanup and simplification // kmacsaigoren@hmc.edu 1 June 2021 // implemented SV48 on top of SV39. This included, adding a level of the FSM for the extra page number segment // adding support for terapage encoding, and for setting the TranslationPAdr using the new level, // adding the internal SvMode signal // // Purpose: Page Table Walker // Part of the Memory Management Unit (MMU) // // A component of the Wally configurable RISC-V project. // // Copyright (C) 2021 Harvey Mudd College & Oklahoma State University // // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT // OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. /////////////////////////////////////////// `include "wally-config.vh" module hptw ( input logic clk, reset, input logic [`XLEN-1:0] SATP_REGW, // includes SATP.MODE to determine number of levels in page table input logic [`XLEN-1:0] PCF, MemAdrM, // addresses to translate input logic ITLBMissF, DTLBMissM, // TLB Miss input logic [1:0] MemRWM, // 10 = read, 01 = write input logic [`XLEN-1:0] HPTWReadPTE, // page table entry from LSU input logic HPTWStall, // stall from LSU output logic [`XLEN-1:0] PTE, // page table entry to TLBs output logic [1:0] PageType, // page type to TLBs output logic ITLBWriteF, DTLBWriteM, // write TLB with new entry output logic SelPTW, // LSU Arbiter should select signals from the PTW rather than from the IEU output logic [`PA_BITS-1:0] TranslationPAdr, output logic HPTWRead, // HPTW requesting to read memory output logic WalkerInstrPageFaultF, WalkerLoadPageFaultM,WalkerStorePageFaultM // faults ); generate if (`MEM_VIRTMEM) begin logic DTLBWalk; // register TLBs translation miss requests logic [`PPN_BITS-1:0] BasePageTablePPN; logic [`PPN_BITS-1:0] CurrentPPN; logic MemWrite; logic Executable, Writable, Readable, Valid; logic Misaligned, MegapageMisaligned; logic ValidPTE, LeafPTE, ValidLeafPTE, ValidNonLeafPTE; logic StartWalk; logic TLBMiss; logic PRegEn; logic [1:0] NextPageType; logic [`SVMODE_BITS-1:0] SvMode; logic [`XLEN-1:0] TranslationVAdr; typedef enum {LEVEL0_SET_ADR, LEVEL0_READ, LEVEL0, LEVEL1_SET_ADR, LEVEL1_READ, LEVEL1, LEVEL2_SET_ADR, LEVEL2_READ, LEVEL2, LEVEL3_SET_ADR, LEVEL3_READ, LEVEL3, LEAF, IDLE, FAULT} statetype; statetype WalkerState, NextWalkerState, InitialWalkerState; // Extract bits from CSRs and inputs assign SvMode = SATP_REGW[`XLEN-1:`XLEN-`SVMODE_BITS]; assign BasePageTablePPN = SATP_REGW[`PPN_BITS-1:0]; assign MemWrite = MemRWM[0]; assign TLBMiss = (DTLBMissM | ITLBMissF); // Determine which address to translate assign TranslationVAdr = DTLBWalk ? MemAdrM : PCF; assign CurrentPPN = PTE[`PPN_BITS+9:10]; // State flops flopenr #(1) TLBMissMReg(clk, reset, StartWalk, DTLBMissM, DTLBWalk); // when walk begins, record whether it was for DTLB (or record 0 for ITLB) assign PRegEn = HPTWRead & ~HPTWStall; flopenr #(`XLEN) PTEReg(clk, reset, PRegEn, HPTWReadPTE, PTE); // Capture page table entry from data cache // Assign PTE descriptors common across all XLEN values // For non-leaf PTEs, D, A, U bits are reserved and ignored. They do not cause faults while walking the page table assign {Executable, Writable, Readable, Valid} = PTE[3:0]; assign LeafPTE = Executable | Writable | Readable; assign ValidPTE = Valid && ~(Writable && ~Readable); assign ValidLeafPTE = ValidPTE & LeafPTE; assign ValidNonLeafPTE = ValidPTE & ~LeafPTE; // Enable and select signals based on states assign StartWalk = (WalkerState == IDLE) & TLBMiss; assign HPTWRead = (WalkerState == LEVEL3_READ) | (WalkerState == LEVEL2_READ) | (WalkerState == LEVEL1_READ) | (WalkerState == LEVEL0_READ); assign SelPTW = (WalkerState != IDLE) & (WalkerState != FAULT); assign DTLBWriteM = (WalkerState == LEAF) & DTLBWalk; assign ITLBWriteF = (WalkerState == LEAF) & ~DTLBWalk; // Raise faults. DTLBMiss assign WalkerInstrPageFaultF = (WalkerState == FAULT) & ~DTLBWalk; assign WalkerLoadPageFaultM = (WalkerState == FAULT) & DTLBWalk & ~MemWrite; assign WalkerStorePageFaultM = (WalkerState == FAULT) & DTLBWalk & MemWrite; // FSM to track PageType based on the levels of the page table traversed flopr #(2) PageTypeReg(clk, reset, NextPageType, PageType); always_comb case (WalkerState) LEVEL3: NextPageType = 2'b11; // terapage LEVEL2: NextPageType = 2'b10; // gigapage LEVEL1: NextPageType = 2'b01; // megapage LEVEL0: NextPageType = 2'b00; // kilopage default: NextPageType = PageType; endcase // TranslationPAdr muxing if (`XLEN==32) begin // RV32 logic [9:0] VPN; logic [`PPN_BITS-1:0] PPN; assign VPN = ((WalkerState == LEVEL1_SET_ADR) | (WalkerState == LEVEL1_READ)) ? TranslationVAdr[31:22] : TranslationVAdr[21:12]; // select VPN field based on HPTW state assign PPN = ((WalkerState == LEVEL1_SET_ADR) | (WalkerState == LEVEL1_READ)) ? BasePageTablePPN : CurrentPPN; assign TranslationPAdr = {PPN, VPN, 2'b00}; end else begin // RV64 logic [8:0] VPN; logic [`PPN_BITS-1:0] PPN; always_comb case (WalkerState) // select VPN field based on HPTW state LEVEL3_SET_ADR, LEVEL3_READ: VPN = TranslationVAdr[47:39]; LEVEL3, LEVEL2_SET_ADR, LEVEL2_READ: VPN = TranslationVAdr[38:30]; LEVEL2, LEVEL1_SET_ADR, LEVEL1_READ: VPN = TranslationVAdr[29:21]; default: VPN = TranslationVAdr[20:12]; endcase assign PPN = ((WalkerState == LEVEL3_SET_ADR) | (WalkerState == LEVEL3_READ) | (SvMode != `SV48 & ((WalkerState == LEVEL2_SET_ADR) | (WalkerState == LEVEL2_READ)))) ? BasePageTablePPN : CurrentPPN; assign TranslationPAdr = {PPN, VPN, 3'b000}; end // Initial state and misalignment for RV32/64 if (`XLEN == 32) begin assign InitialWalkerState = LEVEL1_SET_ADR; assign MegapageMisaligned = |(CurrentPPN[9:0]); // must have zero PPN0 assign Misaligned = ((WalkerState == LEVEL1) & MegapageMisaligned); end else begin logic GigapageMisaligned, TerapageMisaligned; assign InitialWalkerState = (SvMode == `SV48) ? LEVEL3_SET_ADR : LEVEL2_SET_ADR; assign TerapageMisaligned = |(CurrentPPN[26:0]); // must have zero PPN2, PPN1, PPN0 assign GigapageMisaligned = |(CurrentPPN[17:0]); // must have zero PPN1 and PPN0 assign MegapageMisaligned = |(CurrentPPN[8:0]); // must have zero PPN0 assign Misaligned = ((WalkerState == LEVEL3) & TerapageMisaligned) | ((WalkerState == LEVEL2) & GigapageMisaligned) | ((WalkerState == LEVEL1) & MegapageMisaligned); end // Page Table Walker FSM // If the setup time on the D$ RAM is short, it should be possible to merge the LEVELx_READ and LEVELx states // to decrease the latency of the HPTW. However, if the D$ is a cycle limiter, it's better to leave the // HPTW as shown below to keep the D$ setup time out of the critical path. // *** Is this really true. Talk with Ross. Seems like it's the next state logic on critical path instead. flopenl #(.TYPE(statetype)) WalkerStateReg(clk, reset, 1'b1, NextWalkerState, IDLE, WalkerState); always_comb case (WalkerState) IDLE: if (TLBMiss) NextWalkerState = InitialWalkerState; else NextWalkerState = IDLE; LEVEL3_SET_ADR: NextWalkerState = LEVEL3_READ; LEVEL3_READ: if (HPTWStall) NextWalkerState = LEVEL3_READ; else NextWalkerState = LEVEL3; LEVEL3: if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF; else if (ValidNonLeafPTE) NextWalkerState = LEVEL2_SET_ADR; else NextWalkerState = FAULT; LEVEL2_SET_ADR: NextWalkerState = LEVEL2_READ; LEVEL2_READ: if (HPTWStall) NextWalkerState = LEVEL2_READ; else NextWalkerState = LEVEL2; LEVEL2: if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF; else if (ValidNonLeafPTE) NextWalkerState = LEVEL1_SET_ADR; else NextWalkerState = FAULT; LEVEL1_SET_ADR: NextWalkerState = LEVEL1_READ; LEVEL1_READ: if (HPTWStall) NextWalkerState = LEVEL1_READ; else NextWalkerState = LEVEL1; LEVEL1: if (ValidLeafPTE && ~Misaligned) NextWalkerState = LEAF; else if (ValidNonLeafPTE) NextWalkerState = LEVEL0_SET_ADR; else NextWalkerState = FAULT; LEVEL0_SET_ADR: NextWalkerState = LEVEL0_READ; LEVEL0_READ: if (HPTWStall) NextWalkerState = LEVEL0_READ; else NextWalkerState = LEVEL0; LEVEL0: if (ValidLeafPTE) NextWalkerState = LEAF; else NextWalkerState = FAULT; LEAF: NextWalkerState = IDLE; FAULT: NextWalkerState = IDLE; default: begin $error("Default state in HPTW should be unreachable"); NextWalkerState = IDLE; // should never be reached end endcase end else begin // No Virtual memory supported; tie HPTW outputs to 0 assign HPTWRead = 0; assign SelPTW = 0; assign WalkerInstrPageFaultF = 0; assign WalkerLoadPageFaultM = 0; assign WalkerStorePageFaultM = 0; assign TranslationPAdr = 0; end endgenerate endmodule