This commit is contained in:
bbracker 2021-06-10 10:03:01 -04:00
commit f0266f621b
28 changed files with 386 additions and 75 deletions

View File

@ -37,7 +37,7 @@
`define MISA (32'h0014112D)
`define ZCSR_SUPPORTED 1
`define ZCOUNTERS_SUPPORTED 1
`define COUNTERS 31
`define COUNTERS 32
// Microarchitectural Features
`define UARCH_PIPELINED 1

View File

@ -37,7 +37,7 @@
`define MISA (32'h0014112D)
`define ZCSR_SUPPORTED 1
`define ZCOUNTERS_SUPPORTED 1
`define COUNTERS 31
`define COUNTERS 32
// Microarchitectural Features
`define UARCH_PIPELINED 1

View File

@ -36,7 +36,7 @@
//`define MISA (32'h00000104)
`define MISA (32'h00000104 | 1<<5 | 1<<18 | 1 << 20 | 1 << 12)
`define ZCSR_SUPPORTED 1
`define COUNTERS 31
`define COUNTERS 32
`define ZCOUNTERS_SUPPORTED 1
// Microarchitectural Features

View File

@ -36,7 +36,7 @@
//`define MISA (32'h00000104)
`define MISA (32'h00001104 | 1<<5 | 1<<18 | 1 << 20 | 1 << 12 | 1 << 0)
`define ZCSR_SUPPORTED 1
`define COUNTERS 31
`define COUNTERS 32
`define ZCOUNTERS_SUPPORTED 1
// Microarchitectural Features

View File

@ -35,7 +35,7 @@
`define MISA (32'h00000104 | 1 << 20 | 1 << 18 | 1 << 12)
`define ZCSR_SUPPORTED 1
`define COUNTERS 31
`define COUNTERS 32
`define ZCOUNTERS_SUPPORTED 1
// Microarchitectural Features

View File

@ -37,7 +37,7 @@
//`define MISA (32'h00000105)
`define MISA (32'h00000104 | 1 << 5 | 1 << 3 | 1 << 18 | 1 << 20 | 1 << 12 | 1 << 0)
`define ZCSR_SUPPORTED 1
`define COUNTERS 31
`define COUNTERS 32
`define ZCOUNTERS_SUPPORTED 1
// Microarchitectural Features

View File

@ -36,7 +36,7 @@
// MISA RISC-V configuration per specification
`define MISA (32'h00000104 | 0 << 5 | 0 << 3 | 1 << 18 | 1 << 20 | 1 << 12 | 1 << 0)
`define ZCSR_SUPPORTED 1
`define COUNTERS 31
`define COUNTERS 32
`define ZCOUNTERS_SUPPORTED 1
// Microarchitectural Features
@ -67,6 +67,8 @@
`define BOOTTIMBASE 32'h00000000 // spec had been 0x1000 to 0x2FFF, but dh truncated to 0x1000 to 0x1FFF because upper half seems to be all zeros and this is easier for decoder
`define BOOTTIMRANGE 32'h00003FFF
//`define BOOTTIMBASE 32'h00001000 // spec had been 0x1000 to 0x2FFF, but dh truncated to 0x1000 to 0x1FFF because upper half seems to be all zeros and this is easier for decoder
//`define BOOTTIMRANGE 32'h00000FFF
`define TIMBASE 32'h80000000
`define TIMRANGE 32'h07FFFFFF
`define CLINTBASE 32'h02000000

View File

@ -36,7 +36,7 @@
// MISA RISC-V configuration per specification
`define MISA (32'h00000104 | 0 << 5 | 1 << 3 | 1 << 18 | 1 << 20 | 1 << 12 | 1 << 0)
`define ZCSR_SUPPORTED 1
`define COUNTERS 31
`define COUNTERS 32
`define ZCOUNTERS_SUPPORTED 1
// Microarchitectural Features
@ -62,7 +62,7 @@
// Peripheral memory space extends from BASE to BASE+RANGE
// Range should be a thermometer code with 0's in the upper bits and 1s in the lower bits
`define BOOTTIMBASE 32'h00000000 // spec had been 0x1000 to 0x2FFF, but dh truncated to 0x1000 to 0x1FFF because upper half seems to be all zeros and this is easier for decoder
`define BOOTTIMBASE 32'h00000000
`define BOOTTIMRANGE 32'h00003FFF
`define TIMBASE 32'h80000000
// `define TIMRANGE 32'h0007FFFF

View File

@ -35,7 +35,7 @@
// MISA RISC-V configuration per specification
`define MISA (32'h00000104 | 0 << 5 | 0 << 3 | 1 << 18 | 1 << 20 | 1 << 12 | 1 << 0)
`define ZCSR_SUPPORTED 1
`define COUNTERS 31
`define COUNTERS 32
`define ZCOUNTERS_SUPPORTED 1
// Microarchitectural Features

View File

@ -39,9 +39,16 @@
//`define N_SUPPORTED ((MISA >> 13) % 2 == 1)
`define N_SUPPORTED 0
// logarithm of XLEN, used for number of index bits to select
//`define LOG_XLEN (`XLEN == 32 ? 5 : 6)
// Number of 64 bit PMP Configuration Register entries (or pairs of 32 bit entries)
`define PMPCFG_ENTRIES (`PMP_ENTRIES\8)
// Disable spurious Verilator warnings
/* verilator lint_off STMTDLY */
/* verilator lint_off WIDTH */
/* verilator lint_off ASSIGNDLY */
/* verilator lint_off PINCONNECTEMPTY */

View File

@ -156,7 +156,7 @@ module ICacheCntrl #(parameter BLOCKLEN = 256) (
// on spill we want to get the first 2 bytes of the next cache block.
// the spill only occurs if the PCPF mod BlockByteLength == -2. Therefore we can
// simply add 2 to land on the next cache block.
assign PCSpillF = PCPF + 2'b10;
assign PCSpillF = PCPF + `XLEN'b10;
// now we have to select between these three PCs
assign PCPreFinalF = PCMux[0] | StallF ? PCPF : PCNextF; // *** don't like the stallf, but it is necessary
@ -188,7 +188,7 @@ module ICacheCntrl #(parameter BLOCKLEN = 256) (
assign spill = PCPF[4:1] == 4'b1111 ? 1'b1 : 1'b0;
assign hit = ICacheMemReadValid; // note ICacheMemReadValid is hit.
assign FetchCountFlag = FetchCount == FetchCountThreshold;
assign FetchCountFlag = (FetchCount == FetchCountThreshold);
// Next state logic
always_comb begin

View File

@ -50,7 +50,7 @@ module amoalu (
5'b10100: y = ($signed(a) >= $signed(b)) ? a : b; // amomax
5'b11000: y = ($unsigned(a) < $unsigned(b)) ? a : b; // amominu
5'b11100: y = ($unsigned(a) >= $unsigned(b)) ? a : b; // amomaxu
default: y = 'bx; // undefined; *** could change to b for efficiency
default: y = `XLEN'bx; // undefined; *** could change to b for efficiency
endcase
// sign extend if necessary

View File

@ -156,7 +156,7 @@ module controller(
assign IllegalBaseInstrFaultD = ControlsD[0];
assign {RegWriteD, ImmSrcD, ALUSrcAD, ALUSrcBD, MemRWD,
ResultSrcD, BranchD, ALUOpD, JumpD, TargetSrcD, W64D, CSRReadD,
PrivilegedD, MulDivD, AtomicD, unused} = ControlsD & ~IllegalIEUInstrFaultD;
PrivilegedD, MulDivD, AtomicD, unused} = IllegalIEUInstrFaultD ? `CTRLW'b0 : ControlsD;
// *** move Privileged, CSRwrite?? Or move controller out of IEU into datapath and handle all instructions
assign CSRZeroSrcD = InstrD[14] ? (InstrD[19:15] == 0) : (Rs1D == 0); // Is a CSR instruction using zero as the source?

View File

@ -88,11 +88,12 @@ module ifu (
);
logic [`XLEN-1:0] UnalignedPCNextF, PCNextF;
logic [`XLEN-1:0] PCCorrectE, UnalignedPCNextF, PCNextF;
logic misaligned, BranchMisalignedFaultE, BranchMisalignedFaultM, TrapMisalignedFaultM;
logic PrivilegedChangePCM;
logic IllegalCompInstrD;
logic [`XLEN-1:0] PCPlusUpperF, PCPlus2or4F, PCW, PCLinkD, PCLinkM, PCNextPF, PCPF;
logic [`XLEN-1:0] PCPlus2or4F, PCW, PCLinkD, PCLinkM, PCNextPF, PCPF;
logic [`XLEN-3:0] PCPlusUpperF;
logic CompressedF;
logic [31:0] InstrRawD;
localparam [31:0] nop = 32'h00000013; // instruction for NOP
@ -117,7 +118,7 @@ module ifu (
// branch predictor signals
logic SelBPPredF;
logic [`XLEN-1:0] BPPredPCF, PCCorrectE, PCNext0F, PCNext1F, PCNext2F, PCNext3F;
logic [`XLEN-1:0] BPPredPCF, PCNext0F, PCNext1F, PCNext2F, PCNext3F;
logic [4:0] InstrClassD, InstrClassE;

View File

@ -353,7 +353,7 @@ module pagetablewalker (
// Assign outputs to ahblite
// *** Currently truncate address to 32 bits. This must be changed if
// we support larger physical address spaces
assign MMUPAdr = TranslationPAdr[31:0];
assign MMUPAdr = {{(`XLEN-32){1'b0}}, TranslationPAdr[31:0]};
end
endgenerate

View File

@ -36,7 +36,7 @@ module physicalpagemask (
);
localparam EXTRA_BITS = `PPN_BITS - `VPN_BITS;
logic ZeroExtendedVPN = {{EXTRA_BITS{1'b0}}, VPN}; // forces the VPN to be the same width as PPN.
logic [`PPN_BITS-1:0] ZeroExtendedVPN = {{EXTRA_BITS{1'b0}}, VPN}; // forces the VPN to be the same width as PPN.
logic [`PPN_BITS-1:0] OffsetMask;

View File

@ -40,7 +40,9 @@ module priorityencoder #(parameter BINARY_BITS = 3) (
always_comb begin
binary = 0;
for (i = 0; i < 2**BINARY_BITS; i++) begin
// verilator lint_off WIDTH
if (onehot[i]) binary = i; // prioritizes the most significant bit
// verilator lint_on WIDTH
end
end
// *** triple check synthesizability here

View File

@ -59,8 +59,8 @@ module mul (
assign PP = SrcAE[`XLEN-1] & SrcBE[`XLEN-1];
// flavor of multiplication
assign MULH = (Funct3E == 2'b01);
assign MULHSU = (Funct3E == 2'b10);
assign MULH = (Funct3E == 3'b001);
assign MULHSU = (Funct3E == 3'b010);
// assign MULHU = (Funct3E == 2'b11); // signal unused
// Handle signs

View File

@ -53,7 +53,7 @@ module csr #(parameter
output logic [1:0] STATUS_MPP,
output logic STATUS_SPP, STATUS_TSR,
output logic [`XLEN-1:0] MEPC_REGW, SEPC_REGW, UEPC_REGW, UTVEC_REGW, STVEC_REGW, MTVEC_REGW,
output logic [`XLEN-1:0] MEDELEG_REGW, MIDELEG_REGW, SEDELEG_REGW, SIDELEG_REGW,
output logic [11:0] MEDELEG_REGW, MIDELEG_REGW, SEDELEG_REGW, SIDELEG_REGW,
output logic [`XLEN-1:0] SATP_REGW,
output logic [11:0] MIP_REGW, MIE_REGW,
output logic STATUS_MIE, STATUS_SIE,

View File

@ -1,3 +1,285 @@
///////////////////////////////////////////
// csrc.sv
//
// Written: David_Harris@hmc.edu 9 January 2021
// Modified:
//
// Purpose: Counter CSRs
// See RISC-V Privileged Mode Specification 20190608 3.1.10-11
//
// A component of the Wally configurable RISC-V project.
//
// Copyright (C) 2021 Harvey Mudd College & Oklahoma State University
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
// OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////
`include "wally-config.vh"
module csrc #(parameter
MCYCLE = 12'hB00,
// MTIME = 12'hB01, // address not specified in privileged spec. Consider moving to CLINT to match SiFive
// MTIMECMP = 12'hB21, // not specified in privileged spec. Move to CLINT
MINSTRET = 12'hB02,
MHPMCOUNTERBASE = 12'hB00,
//MHPMCOUNTER3 = 12'hB03,
//MHPMCOUNTER4 = 12'hB04,
// ... more counters
//MHPMCOUNTER31 = 12'hB1F,
MCYCLEH = 12'hB80,
// MTIMEH = 12'hB81, // address not specified in privileged spec. Consider moving to CLINT to match SiFive
// MTIMECMPH = 12'hBA1, // not specified in privileged spec. Move to CLINT
MINSTRETH = 12'hB82,
MHPMCOUNTERHBASE = 12'hB80,
//MHPMCOUNTER3H = 12'hB83,
//MHPMCOUNTER4H = 12'hB84,
// ... more counters
//MHPMCOUNTER31H = 12'hB9F,
MCOUNTERINHIBIT = 12'h320,
MHPMEVENTBASE = 12'h320,
//MHPMEVENT3 = 12'h323,
//MHPMEVENT4 = 12'h324,
// ... more counters
//MHPMEVENT31 = 12'h33F,
CYCLE = 12'hC00,
// TIME = 12'hC01, // not specified
INSTRET = 12'hC02,
HPMCOUNTERBASE = 12'hC00,
//HPMCOUNTER3 = 12'hC03,
//HPMCOUNTER4 = 12'hC04,
// ...more counters
//HPMCOUNTER31 = 12'hC1F,
CYCLEH = 12'hC80,
// TIMEH = 12'hC81, // not specified
INSTRETH = 12'hC82,
HPMCOUNTERHBASE = 12'hC80
//HPMCOUNTER3H = 12'hC83,
//HPMCOUNTER4H = 12'hC84,
// ... more counters
//HPMCOUNTER31H = 12'hC9F
) (
input logic clk, reset,
input logic InstrValidW, LoadStallD, CSRMWriteM,
input logic [11:0] CSRAdrM,
input logic [1:0] PrivilegeModeW,
input logic [`XLEN-1:0] CSRWriteValM,
input logic [31:0] MCOUNTINHIBIT_REGW, MCOUNTEREN_REGW, SCOUNTEREN_REGW,
output logic [`XLEN-1:0] CSRCReadValM,
output logic IllegalCSRCAccessM
);
generate
if (`ZCOUNTERS_SUPPORTED) begin
// logic [63:0] TIME_REGW, TIMECMP_REGW;
logic [63:0] CYCLE_REGW, INSTRET_REGW;
logic [63:0] HPMCOUNTER3_REGW, HPMCOUNTER4_REGW; // add more performance counters here if desired
logic [63:0] CYCLEPlusM, INSTRETPlusM;
logic [63:0] HPMCOUNTER3PlusM, HPMCOUNTER4PlusM;
// logic [`XLEN-1:0] NextTIMEM;
logic [`XLEN-1:0] NextCYCLEM, NextINSTRETM;
logic [`XLEN-1:0] NextHPMCOUNTER3M, NextHPMCOUNTER4M;
logic WriteCYCLEM, WriteINSTRETM;
logic WriteHPMCOUNTER3M, WriteHPMCOUNTER4M;
logic [4:0] CounterNumM;
logic [`COUNTERS-1:3][`XLEN-1:0] HPMCOUNTER_REGW, HPMCOUNTERH_REGW;
//logic [`COUNTERS-1:3][`XLEN-1:0] HPMCOUNTERH_REGW;
// Write enables
// assign WriteTIMEM = CSRMWriteM && (CSRAdrM == MTIME);
// assign WriteTIMECMPM = CSRMWriteM && (CSRAdrM == MTIMECMP);
assign WriteCYCLEM = CSRMWriteM && (CSRAdrM == MCYCLE);
assign WriteINSTRETM = CSRMWriteM && (CSRAdrM == MINSTRET);
//assign WriteHPMCOUNTER3M = CSRMWriteM && (CSRAdrM == MHPMCOUNTER3);
//assign WriteHPMCOUNTER4M = CSRMWriteM && (CSRAdrM == MHPMCOUNTER4);
// Counter adders with inhibits for power savings
assign CYCLEPlusM = CYCLE_REGW + {63'b0, ~MCOUNTINHIBIT_REGW[0]};
// assign TIMEPlusM = TIME_REGW + 1; // can't be inhibited
assign INSTRETPlusM = INSTRET_REGW + {63'b0, InstrValidW & ~MCOUNTINHIBIT_REGW[2]};
//assign HPMCOUNTER3PlusM = HPMCOUNTER3_REGW + {63'b0, LoadStallD & ~MCOUNTINHIBIT_REGW[3]}; // count load stalls
///assign HPMCOUNTER4PlusM = HPMCOUNTER4_REGW + {63'b0, 1'b0 & ~MCOUNTINHIBIT_REGW[4]}; // change to count signals
assign NextCYCLEM = WriteCYCLEM ? CSRWriteValM : CYCLEPlusM[`XLEN-1:0];
// assign NextTIMEM = WriteTIMEM ? CSRWriteValM : TIMEPlusM[`XLEN-1:0];
assign NextINSTRETM = WriteINSTRETM ? CSRWriteValM : INSTRETPlusM[`XLEN-1:0];
//assign NextHPMCOUNTER3M = WriteHPMCOUNTER3M ? CSRWriteValM : HPMCOUNTER3PlusM[`XLEN-1:0];
//assign NextHPMCOUNTER4M = WriteHPMCOUNTER4M ? CSRWriteValM : HPMCOUNTER4PlusM[`XLEN-1:0];
// parameterized number of additional counters
if (`COUNTERS > 3) begin
logic [`COUNTERS-1:3] WriteHPMCOUNTERM, CounterEvent;
logic [63:0] /*HPMCOUNTER_REGW[`COUNTERS-1:3], */ HPMCOUNTERPlusM[`COUNTERS-1:3];
logic [`XLEN-1:0] NextHPMCOUNTERM[`COUNTERS-1:3];
genvar i;
assign CounterEvent[3] = LoadStallD;
assign CounterEvent[`COUNTERS-1:4] = 0; // eventually give these sources, including FP instructions, I$/D$ misses, branches and mispredictions
for (i = 3; i < `COUNTERS; i = i+1) begin
assign WriteHPMCOUNTERM[i] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERBASE + i);
assign NextHPMCOUNTERM[i][`XLEN-1:0] = WriteHPMCOUNTERM[i] ? CSRWriteValM : HPMCOUNTERPlusM[i][`XLEN-1:0];
always @(posedge clk, posedge reset) // ModelSim doesn't like syntax of passing array element to flop
if (reset) HPMCOUNTER_REGW[i][`XLEN-1:0] <= #1 0;
else HPMCOUNTER_REGW[i][`XLEN-1:0] <= #1 NextHPMCOUNTERM[i];
//flopr #(`XLEN) HPMCOUNTERreg[i](clk, reset, NextHPMCOUNTERM[i], HPMCOUNTER_REGW[i]);
if (`XLEN==32) begin
logic [`COUNTERS-1:3] WriteHPMCOUNTERHM;
logic [`XLEN-1:0] NextHPMCOUNTERHM[`COUNTERS-1:3];
assign HPMCOUNTERPlusM[i] = {HPMCOUNTERH_REGW[i], HPMCOUNTER_REGW[i]} + {63'b0, CounterEvent[i] & ~MCOUNTINHIBIT_REGW[i]};
assign WriteHPMCOUNTERHM[i] = CSRMWriteM && (CSRAdrM == MHPMCOUNTERHBASE + i);
assign NextHPMCOUNTERHM[i] = WriteHPMCOUNTERHM[i] ? CSRWriteValM : HPMCOUNTERPlusM[i][63:32];
always @(posedge clk, posedge reset) // ModelSim doesn't like syntax of passing array element to flop
if (reset) HPMCOUNTERH_REGW[i][`XLEN-1:0] <= #1 0;
else HPMCOUNTERH_REGW[i][`XLEN-1:0] <= #1 NextHPMCOUNTERHM[i];
//flopr #(`XLEN) HPMCOUNTERHreg[i](clk, reset, NextHPMCOUNTERHM[i], HPMCOUNTER_REGW[i][63:32]);
end else begin
assign HPMCOUNTERPlusM[i] = HPMCOUNTER_REGW[i] + {63'b0, CounterEvent[i] & ~MCOUNTINHIBIT_REGW[i]};
end
end
end
// Write / update counters
// Only the Machine mode versions of the counter CSRs are writable
if (`XLEN==64) begin// 64-bit counters
// flopr #(64) TIMEreg(clk, reset, WriteTIMEM ? CSRWriteValM : TIME_REGW + 1, TIME_REGW); // may count off a different clock***
// flopenr #(64) TIMECMPreg(clk, reset, WriteTIMECMPM, CSRWriteValM, TIMECMP_REGW);
flopr #(64) CYCLEreg(clk, reset, NextCYCLEM, CYCLE_REGW);
flopr #(64) INSTRETreg(clk, reset, NextINSTRETM, INSTRET_REGW);
//flopr #(64) HPMCOUNTER3reg(clk, reset, NextHPMCOUNTER3M, HPMCOUNTER3_REGW);
//flopr #(64) HPMCOUNTER4reg(clk, reset, NextHPMCOUNTER4M, HPMCOUNTER4_REGW);
end else begin // 32-bit low and high counters
logic WriteTIMEHM, WriteTIMECMPHM, WriteCYCLEHM, WriteINSTRETHM;
//logic WriteHPMCOUNTER3HM, WriteHPMCOUNTER4HM;
logic [`XLEN-1:0] NextCYCLEHM, NextTIMEHM, NextINSTRETHM;
//logic [`XLEN-1:0] NextHPMCOUNTER3HM, NextHPMCOUNTER4HM;
// Write Enables
// assign WriteTIMEHM = CSRMWriteM && (CSRAdrM == MTIMEH);
// assign WriteTIMECMPHM = CSRMWriteM && (CSRAdrM == MTIMECMPH);
assign WriteCYCLEHM = CSRMWriteM && (CSRAdrM == MCYCLEH);
assign WriteINSTRETHM = CSRMWriteM && (CSRAdrM == MINSTRETH);
//assign WriteHPMCOUNTER3HM = CSRMWriteM && (CSRAdrM == MHPMCOUNTER3H);
//assign WriteHPMCOUNTER4HM = CSRMWriteM && (CSRAdrM == MHPMCOUNTER4H);
assign NextCYCLEHM = WriteCYCLEM ? CSRWriteValM : CYCLEPlusM[63:32];
// assign NextTIMEHM = WriteTIMEHM ? CSRWriteValM : TIMEPlusM[63:32];
assign NextINSTRETHM = WriteINSTRETHM ? CSRWriteValM : INSTRETPlusM[63:32];
//assign NextHPMCOUNTER3HM = WriteHPMCOUNTER3HM ? CSRWriteValM : HPMCOUNTER3PlusM[63:32];
//assign NextHPMCOUNTER4HM = WriteHPMCOUNTER4HM ? CSRWriteValM : HPMCOUNTER4PlusM[63:32];
// Counter CSRs
// flopr #(32) TIMEreg(clk, reset, NextTIMEM, TIME_REGW); // may count off a different clock***
// flopenr #(32) TIMECMPreg(clk, reset, WriteTIMECMPM, CSRWriteValM, TIMECMP_REGW[31:0]);
flopr #(32) CYCLEreg(clk, reset, NextCYCLEM, CYCLE_REGW[31:0]);
flopr #(32) INSTRETreg(clk, reset, NextINSTRETM, INSTRET_REGW[31:0]);
//flopr #(32) HPMCOUNTER3reg(clk, reset, NextHPMCOUNTER3M, HPMCOUNTER3_REGW[31:0]);
//flopr #(32) HPMCOUNTER4reg(clk, reset, NextHPMCOUNTER4M, HPMCOUNTER4_REGW[31:0]);
// flopr #(32) TIMEHreg(clk, reset, NextTIMEHM, TIME_REGW); // may count off a different clock***
// flopenr #(32) TIMECMPHreg(clk, reset, WriteTIMECMPHM, CSRWriteValM, TIMECMP_REGW[63:32]);
flopr #(32) CYCLEHreg(clk, reset, NextCYCLEHM, CYCLE_REGW[63:32]);
flopr #(32) INSTRETHreg(clk, reset, NextINSTRETHM, INSTRET_REGW[63:32]);
//flopr #(32) HPMCOUNTER3Hreg(clk, reset, NextHPMCOUNTER3HM, HPMCOUNTER3_REGW[63:32]);
//flopr #(32) HPMCOUNTER4Hreg(clk, reset, NextHPMCOUNTER4HM, HPMCOUNTER4_REGW[63:32]);
end
// eventually move TIME and TIMECMP to the CLINT
// run TIME off asynchronous reference clock
// synchronize write enable to TIME
// four phase handshake to synchronize reads from TIME
// interrupt on timer compare
// ability to disable optional CSRs
// Read Counters, or cause excepiton if insufficient privilege in light of COUNTEREN flags
assign CounterNumM = CSRAdrM[4:0]; // which counter to read?
if (`XLEN==64) // 64-bit counter reads
always_comb
if (PrivilegeModeW == `M_MODE ||
MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin
IllegalCSRCAccessM = 0;
if (CSRAdrM >= MHPMCOUNTERBASE+3 && CSRAdrM < MHPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-MHPMCOUNTERBASE];
else if (CSRAdrM >= HPMCOUNTERBASE+3 && CSRAdrM < HPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-HPMCOUNTERBASE];
else case (CSRAdrM)
// MTIME: CSRCReadValM = TIME_REGW;
// MTIMECMP: CSRCReadValM = TIMECMP_REGW;
MCYCLE: CSRCReadValM = CYCLE_REGW;
MINSTRET: CSRCReadValM = INSTRET_REGW;
//MHPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW;
//MHPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW;
// TIME: CSRCReadValM = TIME_REGW;
CYCLE: CSRCReadValM = CYCLE_REGW;
INSTRET: CSRCReadValM = INSTRET_REGW;
//HPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW;
//HPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW;
default: begin
CSRCReadValM = 0;
IllegalCSRCAccessM = 1;
end
endcase
end else begin
IllegalCSRCAccessM = 1; // no privileges for this csr
CSRCReadValM = 0;
end
else // 32-bit counter reads
always_comb
if (PrivilegeModeW == `M_MODE || MCOUNTEREN_REGW[CounterNumM] && (PrivilegeModeW == `S_MODE || SCOUNTEREN_REGW[CounterNumM])) begin
IllegalCSRCAccessM = 0;
if (CSRAdrM >= MHPMCOUNTERBASE+3 && CSRAdrM < MHPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-MHPMCOUNTERBASE];
else if (CSRAdrM >= HPMCOUNTERBASE+3 && CSRAdrM < HPMCOUNTERBASE+`COUNTERS) CSRCReadValM = HPMCOUNTER_REGW[CSRAdrM-HPMCOUNTERBASE];
else if (CSRAdrM >= MHPMCOUNTERHBASE+3 && CSRAdrM < MHPMCOUNTERHBASE+`COUNTERS) CSRCReadValM = HPMCOUNTERH_REGW[CSRAdrM-MHPMCOUNTERHBASE];
else if (CSRAdrM >= HPMCOUNTERHBASE+3 && CSRAdrM < HPMCOUNTERHBASE+`COUNTERS) CSRCReadValM = HPMCOUNTERH_REGW[CSRAdrM-HPMCOUNTERHBASE];
else case (CSRAdrM)
// MTIME: CSRCReadValM = TIME_REGW[31:0];
// MTIMECMP: CSRCReadValM = TIMECMP_REGW[31:0];
MCYCLE: CSRCReadValM = CYCLE_REGW[31:0];
MINSTRET: CSRCReadValM = INSTRET_REGW[31:0];
//MHPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW[31:0];
//MHPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW[31:0];
// TIME: CSRCReadValM = TIME_REGW[31:0];
CYCLE: CSRCReadValM = CYCLE_REGW[31:0];
INSTRET: CSRCReadValM = INSTRET_REGW[31:0];
//HPMCOUNTER3: CSRCReadValM = HPMCOUNTER3_REGW[31:0];
//HPMCOUNTER4: CSRCReadValM = HPMCOUNTER4_REGW[31:0];
// MTIMEH: CSRCReadValM = TIME_REGW[63:32];
// MTIMECMPH: CSRCReadValM = TIMECMP_REGW[63:32];
MCYCLEH: CSRCReadValM = CYCLE_REGW[63:32];
MINSTRETH: CSRCReadValM = INSTRET_REGW[63:32];
//MHPMCOUNTER3H: CSRCReadValM = HPMCOUNTER3_REGW[63:32];
//MHPMCOUNTER4H: CSRCReadValM = HPMCOUNTER4_REGW[63:32];
// TIMEH: CSRCReadValM = TIME_REGW[63:32];
CYCLEH: CSRCReadValM = CYCLE_REGW[63:32];
INSTRETH: CSRCReadValM = INSTRET_REGW[63:32];
//HPMCOUNTER3H: CSRCReadValM = HPMCOUNTER3_REGW[63:32];
//HPMCOUNTER4H: CSRCReadValM = HPMCOUNTER4_REGW[63:32];
default: begin
CSRCReadValM = 0;
IllegalCSRCAccessM = 1;
end
endcase
end else begin
IllegalCSRCAccessM = 1; // no privileges for this csr
CSRCReadValM = 0;
end
end else begin
assign CSRCReadValM = 0;
assign IllegalCSRCAccessM = 1;
end
endgenerate
endmodule
/* Bad code from class
///////////////////////////////////////////
// csrc.sv
//
@ -29,8 +311,14 @@
`include "wally-config.vh"
module csrc (
input logic clk, reset,
module csrc #(parameter
// counters
MHPMCOUNTERBASE = 12'hB00,
MHPMCOUNTERHBASE = 12'hB80,
MPHMEVENTBASE = 12'h320,
HPMCOUNTERBASE = 12'hC00,
HPMCOUNTERHBASE = 12'hC80,
)(input logic clk, reset,
input logic StallD, StallE, StallM, StallW,
input logic InstrValidW, LoadStallD, CSRMWriteM,
input logic BPPredDirWrongM,
@ -45,6 +333,9 @@ module csrc (
output logic [`XLEN-1:0] CSRCReadValM,
output logic IllegalCSRCAccessM);
// counters
// create Counter arrays to store address of each counter
integer MHPMCOUNTER [`COUNTERS:0];
integer MHPMCOUNTERH [`COUNTERS:0];
@ -53,6 +344,7 @@ module csrc (
integer MHPEVENT [`COUNTERS:0];
genvar i;
// *** this is totally incorrect. Fix parameterized counters dh 6/9/21
generate
for (i = 0; i <= `COUNTERS; i = i + 1) begin
if (i != 1) begin
@ -198,4 +490,4 @@ module csrc (
end // end for else
endgenerate
endmodule
*/

View File

@ -37,7 +37,7 @@ module csri #(parameter
input logic CSRMWriteM, CSRSWriteM,
input logic [11:0] CSRAdrM,
input logic ExtIntM, TimerIntM, SwIntM,
input logic [`XLEN-1:0] MIDELEG_REGW,
input logic [11:0] MIDELEG_REGW,
output logic [11:0] MIP_REGW, MIE_REGW, SIP_REGW, SIE_REGW,
input logic [`XLEN-1:0] CSRWriteValM
);
@ -87,8 +87,8 @@ module csri #(parameter
end
always @(posedge clk, posedge reset) begin
if (reset) IE_REGW <= 12'b0;
else if (WriteMIEM) IE_REGW <= (CSRWriteValM & 12'hAAA); // MIE controls M and S fields
else if (WriteSIEM) IE_REGW <= (CSRWriteValM & 12'h222) | (IE_REGW & 12'h888); // only S fields
else if (WriteMIEM) IE_REGW <= (CSRWriteValM[11:0] & 12'hAAA); // MIE controls M and S fields
else if (WriteSIEM) IE_REGW <= (CSRWriteValM[11:0] & 12'h222) | (IE_REGW & 12'h888); // only S fields
// else if (WriteUIEM) IE_REGW = (CSRWriteValM & 12'h111) | (IE_REGW & 12'hAAA); // only U field
end
endgenerate

View File

@ -74,14 +74,8 @@ module csrm #(parameter
DCSR = 12'h7B0,
DPC = 12'h7B1,
DSCRATCH0 = 12'h7B2,
DSCRATCH1 = 12'h7B3,
// Constants
ZERO = {(`XLEN){1'b0}},
ALL_ONES = 32'hfffffff,
MEDELEG_MASK = ~(ZERO | 1'b1 << 11),
MIDELEG_MASK = {{(`XLEN-12){1'b0}}, 12'h222}
) (
DSCRATCH1 = 12'h7B3
) (
input logic clk, reset,
input logic StallW,
input logic CSRMWriteM, MTrapM,
@ -90,7 +84,7 @@ module csrm #(parameter
input logic [`XLEN-1:0] CSRWriteValM,
output logic [`XLEN-1:0] CSRMReadValM, MEPC_REGW, MTVEC_REGW,
output logic [31:0] MCOUNTEREN_REGW, MCOUNTINHIBIT_REGW,
output logic [`XLEN-1:0] MEDELEG_REGW, MIDELEG_REGW,
output logic [11:0] MEDELEG_REGW, MIDELEG_REGW,
// 64-bit registers in RV64, or two 32-bit registers in RV32
output logic [63:0] PMPCFG01_REGW, PMPCFG23_REGW,
output var logic [`XLEN-1:0] PMPADDR_ARRAY_REGW [0:`PMP_ENTRIES-1],
@ -149,8 +143,8 @@ module csrm #(parameter
flopenl #(`XLEN) MTVECreg(clk, reset, WriteMTVECM, {CSRWriteValM[`XLEN-1:2], 1'b0, CSRWriteValM[0]}, `XLEN'b0, MTVEC_REGW); //busybear: changed reset value to 0
generate
if (`S_SUPPORTED | (`U_SUPPORTED & `N_SUPPORTED)) begin // DELEG registers should exist
flopenl #(`XLEN) MEDELEGreg(clk, reset, WriteMEDELEGM, CSRWriteValM & MEDELEG_MASK, ZERO, MEDELEG_REGW);
flopenl #(`XLEN) MIDELEGreg(clk, reset, WriteMIDELEGM, CSRWriteValM & MIDELEG_MASK, ZERO, MIDELEG_REGW);
flopenl #(12) MEDELEGreg(clk, reset, WriteMEDELEGM, CSRWriteValM[11:0] & 12'h7FF, 12'b0, MEDELEG_REGW);
flopenl #(12) MIDELEGreg(clk, reset, WriteMIDELEGM, CSRWriteValM[11:0] & 12'h222, 12'b0, MIDELEG_REGW);
end else begin
assign MEDELEG_REGW = 0;
assign MIDELEG_REGW = 0;
@ -167,9 +161,9 @@ module csrm #(parameter
if (`OVPSIM_CSR_CONFIG)
flopenl #(32) MCOUNTERENreg(clk, reset, WriteMCOUNTERENM, {CSRWriteValM[31:2],1'b0,CSRWriteValM[0]}, 32'b0, MCOUNTEREN_REGW);
else
flopenl #(32) MCOUNTERENreg(clk, reset, WriteMCOUNTERENM, CSRWriteValM[31:0], ALL_ONES, MCOUNTEREN_REGW);
flopenl #(32) MCOUNTERENreg(clk, reset, WriteMCOUNTERENM, CSRWriteValM[31:0], 32'hFFFFFFFF, MCOUNTEREN_REGW);
endgenerate
flopenl #(32) MCOUNTINHIBITreg(clk, reset, WriteMCOUNTINHIBITM, CSRWriteValM[31:0], ALL_ONES, MCOUNTINHIBIT_REGW);
flopenl #(32) MCOUNTINHIBITreg(clk, reset, WriteMCOUNTINHIBITM, CSRWriteValM[31:0], 32'hFFFFFFFF, MCOUNTINHIBIT_REGW);
// There are PMP_ENTRIES = 0, 16, or 64 PMPADDR registers, each of which has its own flop
generate
@ -202,13 +196,13 @@ module csrm #(parameter
MISA_ADR: CSRMReadValM = MISA_REGW;
MVENDORID: CSRMReadValM = 0;
MARCHID: CSRMReadValM = 0;
MIMPID: CSRMReadValM = 'h100; // pipelined implementation
MIMPID: CSRMReadValM = `XLEN'h100; // pipelined implementation
MHARTID: CSRMReadValM = 0;
MSTATUS: CSRMReadValM = MSTATUS_REGW;
MSTATUSH: CSRMReadValM = 0; // flush this out later if MBE and SBE fields are supported
MTVEC: CSRMReadValM = MTVEC_REGW;
MEDELEG: CSRMReadValM = MEDELEG_REGW;
MIDELEG: CSRMReadValM = MIDELEG_REGW;
MEDELEG: CSRMReadValM = {{(`XLEN-12){1'b0}}, MEDELEG_REGW};
MIDELEG: CSRMReadValM = {{(`XLEN-12){1'b0}}, MIDELEG_REGW};
MIP: CSRMReadValM = {{(`XLEN-12){1'b0}}, MIP_REGW};
MIE: CSRMReadValM = {{(`XLEN-12){1'b0}}, MIE_REGW};
MSCRATCH: CSRMReadValM = MSCRATCH_REGW;
@ -218,9 +212,9 @@ module csrm #(parameter
MCOUNTEREN:CSRMReadValM = {{(`XLEN-32){1'b0}}, MCOUNTEREN_REGW};
MCOUNTINHIBIT:CSRMReadValM = {{(`XLEN-32){1'b0}}, MCOUNTINHIBIT_REGW};
PMPCFG0: CSRMReadValM = PMPCFG01_REGW[`XLEN-1:0];
PMPCFG1: CSRMReadValM = {{(`XLEN-32){1'b0}}, PMPCFG01_REGW[63:31]};
PMPCFG1: CSRMReadValM = {{(`XLEN-32){1'b0}}, PMPCFG01_REGW[63:32]};
PMPCFG2: CSRMReadValM = PMPCFG23_REGW[`XLEN-1:0];
PMPCFG3: CSRMReadValM = {{(`XLEN-32){1'b0}}, PMPCFG23_REGW[63:31]};
PMPCFG3: CSRMReadValM = {{(`XLEN-32){1'b0}}, PMPCFG23_REGW[63:32]};
PMPADDR0: CSRMReadValM = PMPADDR_ARRAY_REGW[0]; // *** make configurable
PMPADDR1: CSRMReadValM = PMPADDR_ARRAY_REGW[1];
PMPADDR2: CSRMReadValM = PMPADDR_ARRAY_REGW[2];

View File

@ -40,12 +40,7 @@ module csrs #(parameter
SCAUSE = 12'h142,
STVAL = 12'h143,
SIP= 12'h144,
SATP = 12'h180,
// Constants
ZERO = {(`XLEN){1'b0}},
ALL_ONES = 32'hfffffff,
SEDELEG_MASK = ~(ZERO | 3'b111 << 9)
SATP = 12'h180
) (
input logic clk, reset,
input logic StallW,
@ -55,7 +50,7 @@ module csrs #(parameter
input logic [`XLEN-1:0] CSRWriteValM,
output logic [`XLEN-1:0] CSRSReadValM, SEPC_REGW, STVEC_REGW,
output logic [31:0] SCOUNTEREN_REGW,
output logic [`XLEN-1:0] SEDELEG_REGW, SIDELEG_REGW,
output logic [11:0] SEDELEG_REGW, SIDELEG_REGW,
output logic [`XLEN-1:0] SATP_REGW,
input logic [11:0] SIP_REGW, SIE_REGW,
output logic WriteSSTATUSM,
@ -84,22 +79,22 @@ module csrs #(parameter
assign WriteSCOUNTERENM = CSRSWriteM && (CSRAdrM == SCOUNTEREN) && ~StallW;
// CSRs
flopenl #(`XLEN) STVECreg(clk, reset, WriteSTVECM, {CSRWriteValM[`XLEN-1:2], 1'b0, CSRWriteValM[0]}, ZERO, STVEC_REGW); //busybear: change reset to 0
flopenl #(`XLEN) STVECreg(clk, reset, WriteSTVECM, {CSRWriteValM[`XLEN-1:2], 1'b0, CSRWriteValM[0]}, `XLEN'b0, STVEC_REGW); //busybear: change reset to 0
flopenr #(`XLEN) SSCRATCHreg(clk, reset, WriteSSCRATCHM, CSRWriteValM, SSCRATCH_REGW);
flopenr #(`XLEN) SEPCreg(clk, reset, WriteSEPCM, NextEPCM, SEPC_REGW);
flopenl #(`XLEN) SCAUSEreg(clk, reset, WriteSCAUSEM, NextCauseM, ZERO, SCAUSE_REGW);
flopenl #(`XLEN) SCAUSEreg(clk, reset, WriteSCAUSEM, NextCauseM, `XLEN'b0, SCAUSE_REGW);
flopenr #(`XLEN) STVALreg(clk, reset, WriteSTVALM, NextMtvalM, STVAL_REGW);
flopenr #(`XLEN) SATPreg(clk, reset, WriteSATPM, CSRWriteValM, SATP_REGW);
if (`OVPSIM_CSR_CONFIG)
flopenl #(32) SCOUNTERENreg(clk, reset, WriteSCOUNTERENM, {CSRWriteValM[31:2],1'b0,CSRWriteValM[0]}, 32'b0, SCOUNTEREN_REGW);
else
flopenl #(32) SCOUNTERENreg(clk, reset, WriteSCOUNTERENM, CSRWriteValM[31:0], ALL_ONES, SCOUNTEREN_REGW);
flopenl #(32) SCOUNTERENreg(clk, reset, WriteSCOUNTERENM, CSRWriteValM[31:0], 32'hFFFFFFFF, SCOUNTEREN_REGW);
if (`N_SUPPORTED) begin
logic WriteSEDELEGM, WriteSIDELEGM;
assign WriteSEDELEGM = CSRSWriteM && (CSRAdrM == SEDELEG);
assign WriteSIDELEGM = CSRSWriteM && (CSRAdrM == SIDELEG);
flopenl #(`XLEN) SEDELEGreg(clk, reset, WriteSEDELEGM, CSRWriteValM & SEDELEG_MASK, ZERO, SEDELEG_REGW);
flopenl #(`XLEN) SIDELEGreg(clk, reset, WriteSIDELEGM, CSRWriteValM, ZERO, SIDELEG_REGW);
flopenl #(12) SEDELEGreg(clk, reset, WriteSEDELEGM, CSRWriteValM[11:0] & 12'h1FF, 12'b0, SEDELEG_REGW);
flopenl #(12) SIDELEGreg(clk, reset, WriteSIDELEGM, CSRWriteValM[11:0], 12'b0, SIDELEG_REGW);
end else begin
assign SEDELEG_REGW = 0;
assign SIDELEG_REGW = 0;
@ -111,8 +106,8 @@ module csrs #(parameter
case (CSRAdrM)
SSTATUS: CSRSReadValM = SSTATUS_REGW;
STVEC: CSRSReadValM = STVEC_REGW;
SEDELEG: CSRSReadValM = SEDELEG_REGW;
SIDELEG: CSRSReadValM = SIDELEG_REGW;
SEDELEG: CSRSReadValM = {{(`XLEN-12){1'b0}}, SEDELEG_REGW};
SIDELEG: CSRSReadValM = {{(`XLEN-12){1'b0}}, SIDELEG_REGW};
SIP: CSRSReadValM = {{(`XLEN-12){1'b0}}, SIP_REGW};
SIE: CSRSReadValM = {{(`XLEN-12){1'b0}}, SIE_REGW};
SSCRATCH: CSRSReadValM = SSCRATCH_REGW;

View File

@ -76,8 +76,7 @@ module privileged (
logic [`XLEN-1:0] CauseM, NextFaultMtvalM;
logic [`XLEN-1:0] MEPC_REGW, SEPC_REGW, UEPC_REGW, UTVEC_REGW, STVEC_REGW, MTVEC_REGW;
logic [`XLEN-1:0] MEDELEG_REGW, MIDELEG_REGW, SEDELEG_REGW, SIDELEG_REGW;
// logic [11:0] MIP_REGW, SIP_REGW, UIP_REGW, MIE_REGW, SIE_REGW, UIE_REGW;
logic [11:0] MEDELEG_REGW, MIDELEG_REGW, SEDELEG_REGW, SIDELEG_REGW;
logic uretM, sretM, mretM, ecallM, ebreakM, wfiM, sfencevmaM;
logic IllegalCSRAccessM;
@ -105,8 +104,8 @@ module privileged (
///////////////////////////////////////////
// get bits of DELEG registers based on CAUSE
assign md = CauseM[`XLEN-1] ? MIDELEG_REGW[CauseM[4:0]] : MEDELEG_REGW[CauseM[4:0]];
assign sd = CauseM[`XLEN-1] ? SIDELEG_REGW[CauseM[4:0]] : SEDELEG_REGW[CauseM[4:0]]; // depricated
assign md = CauseM[`XLEN-1] ? MIDELEG_REGW[CauseM[3:0]] : MEDELEG_REGW[CauseM[3:0]];
assign sd = CauseM[`XLEN-1] ? SIDELEG_REGW[CauseM[3:0]] : SEDELEG_REGW[CauseM[3:0]]; // depricated
// PrivilegeMode FSM
always_comb

View File

@ -49,15 +49,16 @@ module trap (
// input logic WriteMIPM, WriteSIPM, WriteUIPM, WriteMIEM, WriteSIEM, WriteUIEM
);
logic [11:0] MIntGlobalEnM, SIntGlobalEnM, PendingIntsM;
logic MIntGlobalEnM, SIntGlobalEnM;
logic [11:0] PendingIntsM;
//logic InterruptM;
logic [`XLEN-1:0] PrivilegedTrapVector, PrivilegedVectoredTrapVector;
logic BusTrapM;
// Determine pending enabled interrupts
assign MIntGlobalEnM = {12{(PrivilegeModeW != `M_MODE) || STATUS_MIE}}; // if M ints enabled or lower priv 3.1.9
assign MIntGlobalEnM = (PrivilegeModeW != `M_MODE) || STATUS_MIE; // if M ints enabled or lower priv 3.1.9
assign SIntGlobalEnM = (PrivilegeModeW == `U_MODE) || STATUS_SIE; // if S ints enabled or lower priv 3.1.9
assign PendingIntsM = (MIP_REGW & MIE_REGW) & ((MIntGlobalEnM & 12'h888) | (SIntGlobalEnM & 12'h222));
assign PendingIntsM = (MIP_REGW & MIE_REGW) & ({12{MIntGlobalEnM}} & 12'h888) | ({12{SIntGlobalEnM}} & 12'h222);
assign InterruptM = (|PendingIntsM) & InstrValidM & ~CommittedM;
// interrupt if any sources are pending
// & with a M stage valid bit to avoid interrupts from interrupt a nonexistent flushed instruction (in the M stage)

View File

@ -96,6 +96,7 @@ module dtim #(parameter BASE=0, RANGE = 65535) (
end
-----/\----- EXCLUDED -----/\----- */
/* verilator lint_off WIDTH */
generate
if (`XLEN == 64) begin
always_ff @(posedge HCLK) begin
@ -111,7 +112,8 @@ module dtim #(parameter BASE=0, RANGE = 65535) (
end
end
endgenerate
/* verilator lint_on WIDTH */
assign HREADTim = HREADYTim ? HREADTim0 : 'bz;
assign HREADTim = HREADYTim ? HREADTim0 : `XLEN'bz;
endmodule

View File

@ -70,7 +70,7 @@ module uartPC16550D(
// Baud and rx/tx timing
logic baudpulse, txbaudpulse, rxbaudpulse; // high one system clk cycle each baud/16 period
logic [23:0] baudcount;
logic [16+`UART_PRESCALE-1:0] baudcount;
logic [3:0] rxoversampledcnt, txoversampledcnt; // count oversampled-by-16
logic [3:0] rxbitsreceived, txbitssent;
statetype rxstate, txstate;
@ -97,7 +97,8 @@ module uartPC16550D(
logic [15:0] RXerrbit, rxfullbit;
// transmit data
logic [11:0] TXHR, txdata, nexttxdata, txsr;
logic [7:0] TXHR, nexttxdata;
logic [11:0] txdata, txsr;
logic txnextbit, txhrfull, txsrfull;
logic txparity;
logic txfifoempty, txfifofull, txfifodmaready;
@ -169,7 +170,7 @@ module uartPC16550D(
always_comb
if (~MEMRb)
case (A)
3'b000: if (DLAB) Dout = DLL; else Dout = RBR;
3'b000: if (DLAB) Dout = DLL; else Dout = RBR[7:0];
3'b001: if (DLAB) Dout = DLM; else Dout = {4'b0, IER[3:0]};
3'b010: Dout = {{2{fifoenabled}}, 2'b00, intrID[2:0], ~intrpending}; // Read only Interupt Ident Register
3'b011: Dout = LCR;
@ -228,13 +229,13 @@ module uartPC16550D(
end
assign rxcentered = rxbaudpulse && (rxoversampledcnt == 4'b1000); // implies rxstate = UART_ACTIVE
assign rxbitsexpected = 1 + (5 + LCR[1:0]) + LCR[3] + 1; // start bit + data bits + (parity bit) + stop bit
assign rxbitsexpected = 4'd1 + (4'd5 + {2'b00, LCR[1:0]}) + {3'b000, LCR[3]} + 4'd1; // start bit + data bits + (parity bit) + stop bit
///////////////////////////////////////////
// receive shift register, buffer register, FIFO
///////////////////////////////////////////
always_ff @(posedge HCLK, negedge HRESETn)
if (~HRESETn) rxshiftreg <= #1 9'b000000001; // initialize so that there is a valid stop bit
if (~HRESETn) rxshiftreg <= #1 10'b0000000001; // initialize so that there is a valid stop bit
else if (rxcentered) rxshiftreg <= #1 {rxshiftreg[8:0], SINsync}; // capture bit
assign rxparitybit = rxshiftreg[1]; // parity, if it exists, in bit 1 when all done
assign rxstopbit = rxshiftreg[0];
@ -278,8 +279,10 @@ module uartPC16550D(
end
assign rxfifoempty = (rxfifohead == rxfifotail);
// verilator lint_off WIDTH
assign rxfifoentries = (rxfifohead >= rxfifotail) ? (rxfifohead-rxfifotail) :
(rxfifohead + 16 - rxfifotail);
// verilator lint_on WIDTH
assign rxfifotriggered = rxfifoentries >= rxfifotriggerlevel;
//assign rxfifotimeout = rxtimeoutcnt[6]; // time out after 4 character periods; *** probably not right yet
assign rxfifotimeout = 0; // disabled pending fix
@ -337,7 +340,7 @@ module uartPC16550D(
txstate <= #1 UART_IDLE;
end
assign txbitsexpected = 1 + (5 + LCR[1:0]) + LCR[3] + 1 + LCR[2] - 1; // start bit + data bits + (parity bit) + stop bit(s)
assign txbitsexpected = 4'd1 + (4'd5 + {2'b00, LCR[1:0]}) + {3'b000, LCR[3]} + 4'd1 + {3'b000, LCR[2]} - 4'd1; // start bit + data bits + (parity bit) + stop bit(s)
assign txnextbit = txbaudpulse && (txoversampledcnt == 4'b0000); // implies txstate = UART_ACTIVE
///////////////////////////////////////////
@ -400,8 +403,10 @@ module uartPC16550D(
end
assign txfifoempty = (txfifohead == txfifotail);
// verilator lint_off WIDTH
assign txfifoentries = (txfifohead >= txfifotail) ? (txfifohead-txfifotail) :
(txfifohead + 16 - txfifotail);
// verilator lint_on WIDTH
assign txfifofull = (txfifoentries == 4'b1111);
// transmit buffer ready bit

View File

@ -516,6 +516,10 @@ string tests32f[] = '{
flopenr #(`XLEN) PCWReg(clk, reset, ~dut.hart.ieu.dp.StallW, dut.hart.ifu.PCM, PCW);
flopenr #(32) InstrWReg(clk, reset, ~dut.hart.ieu.dp.StallW, dut.hart.ifu.InstrM, InstrW);
// check assertions for a legal configuration
riscvassertions riscvassertions();
// pick tests based on modes supported
initial begin
if (`XLEN == 64) begin // RV64
@ -713,6 +717,13 @@ string tests32f[] = '{
endmodule
module riscvassertions();
// Legal number of PMP entries are 0, 16, or 64
initial begin
assert (`PMP_ENTRIES == 0 || `PMP_ENTRIES==16 || `PMP_ENTRIES==64) else $error("Illegal number of PMP entries");
end
endmodule
/* verilator lint_on STMTDLY */
/* verilator lint_on WIDTH */