Moved divide iteration register names to M stage

This commit is contained in:
David Harris 2021-10-10 11:30:53 -07:00
parent e8d013b106
commit e93014d6d8

View File

@ -38,9 +38,9 @@ module intdivrestoring (
output logic [`XLEN-1:0] QuotM, RemM output logic [`XLEN-1:0] QuotM, RemM
); );
logic [`XLEN-1:0] WE[`DIV_BITSPERCYCLE:0]; logic [`XLEN-1:0] WM[`DIV_BITSPERCYCLE:0];
logic [`XLEN-1:0] XQE[`DIV_BITSPERCYCLE:0]; logic [`XLEN-1:0] XQM[`DIV_BITSPERCYCLE:0];
logic [`XLEN-1:0] DinE, XinE, DnE, DAbsBE, DAbsBM, XnE, XInitE, WM, XQM, WnM, XQnM; logic [`XLEN-1:0] DinE, XinE, DnE, DAbsBE, DAbsBM, XnE, XInitE, WnM, XQnM;
localparam STEPBITS = $clog2(`XLEN/`DIV_BITSPERCYCLE); localparam STEPBITS = $clog2(`XLEN/`DIV_BITSPERCYCLE);
logic [STEPBITS:0] step; logic [STEPBITS:0] step;
logic Div0E, Div0M; logic Div0E, Div0M;
@ -49,6 +49,10 @@ module intdivrestoring (
logic [`XLEN-1:0] WNextE, XQNextE; logic [`XLEN-1:0] WNextE, XQNextE;
//////////////////////////////
// Execute Stage: prepare for division calculation with control logic, W logic and absolute values, initialize W and XQ
//////////////////////////////
// Divider control signals // Divider control signals
assign DivStartE = DivE & ~BusyE & ~DivDoneM; assign DivStartE = DivE & ~BusyE & ~DivDoneM;
assign DivBusyE = BusyE | DivStartE; assign DivBusyE = BusyE | DivStartE;
@ -75,41 +79,43 @@ module intdivrestoring (
neg #(`XLEN) negx(XinE, XnE); neg #(`XLEN) negx(XinE, XnE);
mux3 #(`XLEN) xabsmux(XinE, XnE, SrcAE, {Div0E, SignXE}, XInitE); // take absolute value for signed operations, or keep original value for divide by 0 mux3 #(`XLEN) xabsmux(XinE, XnE, SrcAE, {Div0E, SignXE}, XInitE); // take absolute value for signed operations, or keep original value for divide by 0
// initialization multiplexers on first cycle of operation (one cycle after start is asserted) // initialization multiplexers on first cycle of operation
mux2 #(`XLEN) wmux(WE[`DIV_BITSPERCYCLE], {`XLEN{1'b0}}, DivStartE, WNextE); mux2 #(`XLEN) wmux(WM[`DIV_BITSPERCYCLE], {`XLEN{1'b0}}, DivStartE, WNextE);
mux2 #(`XLEN) xmux(XQE[`DIV_BITSPERCYCLE], XInitE, DivStartE, XQNextE); mux2 #(`XLEN) xmux(XQM[`DIV_BITSPERCYCLE], XInitE, DivStartE, XQNextE);
//////////////////////////////
// Memory Stage: division iterations, output sign correction
//////////////////////////////
// registers before division steps // registers before division steps
// *** maybe change this stuff to M stage // *** maybe change this stuff to M stage
flopen #(`XLEN) wreg(clk, DivBusyE, WNextE, WE[0]); flopen #(`XLEN) wreg(clk, DivBusyE, WNextE, WM[0]);
flopen #(`XLEN) xreg(clk, DivBusyE, XQNextE, XQE[0]); flopen #(`XLEN) xreg(clk, DivBusyE, XQNextE, XQM[0]);
flopen #(`XLEN) dabsreg(clk, DivStartE, DAbsBE, DAbsBM); flopen #(`XLEN) dabsreg(clk, DivStartE, DAbsBE, DAbsBM);
flopen #(1) Div0eMReg(clk, DivStartE, Div0E, Div0M); flopen #(3) Div0eMReg(clk, DivStartE, {Div0E, SignDE, SignXE}, {Div0M, SignDM, SignXM});
flopen #(1) SignDMReg(clk, DivStartE, SignDE, SignDM);
flopen #(1) SignXMReg(clk, DivStartE, SignXE, SignXM);
// one copy of divstep for each bit produced per cycle // one copy of divstep for each bit produced per cycle
generate generate
genvar i; genvar i;
for (i=0; i<`DIV_BITSPERCYCLE; i = i+1) for (i=0; i<`DIV_BITSPERCYCLE; i = i+1)
intdivrestoringstep divstep(WE[i], XQE[i], DAbsBM, WE[i+1], XQE[i+1]); intdivrestoringstep divstep(WM[i], XQM[i], DAbsBM, WM[i+1], XQM[i+1]);
endgenerate endgenerate
assign WM = WE[0]; // *** move to M stage
assign XQM = XQE[0];
// Output selection logic in Memory Stage // Output selection logic in Memory Stage
// On final setp of signed operations, negate outputs as needed // On final setp of signed operations, negate outputs as needed
assign NegWM = SignXM; // Remainder should have same sign as X assign NegWM = SignXM; // Remainder should have same sign as X
assign NegQM = SignXM ^ SignDM; // Quotient should be negative if one operand is positive and the other is negative assign NegQM = SignXM ^ SignDM; // Quotient should be negative if one operand is positive and the other is negative
neg #(`XLEN) wneg(WM, WnM); neg #(`XLEN) qneg(XQM[0], XQnM);
neg #(`XLEN) qneg(XQM, XQnM); neg #(`XLEN) wneg(WM[0], WnM);
// Select appropriate output: normal, negated, or for divide by zero // Select appropriate output: normal, negated, or for divide by zero
mux3 #(`XLEN) qmux(XQM, XQnM, {`XLEN{1'b1}}, {Div0M, NegQM}, QuotM); // Q taken from XQ register, negated if necessary, or all 1s when dividing by zero mux3 #(`XLEN) qmux(XQM[0], XQnM, {`XLEN{1'b1}}, {Div0M, NegQM}, QuotM); // Q taken from XQ register, negated if necessary, or all 1s when dividing by zero
mux3 #(`XLEN) remmux(WM, WnM, XQM, {Div0M, NegWM}, RemM); // REM taken from W register, negated if necessary, or from X when dividing by zero mux3 #(`XLEN) remmux(WM[0], WnM, XQM[0], {Div0M, NegWM}, RemM); // REM taken from W register, negated if necessary, or from X when dividing by zero
// Divider FSM to sequence Busy, and Done //////////////////////////////
always_ff @(posedge clk) // Divider FSM to sequence Busy and Done
//////////////////////////////
always_ff @(posedge clk)
if (reset) begin if (reset) begin
BusyE = 0; DivDoneM = 0; step = 0; BusyE = 0; DivDoneM = 0; step = 0;
end else if (DivStartE & ~StallM) begin end else if (DivStartE & ~StallM) begin
@ -127,6 +133,8 @@ module intdivrestoring (
DivDoneM = StallM; DivDoneM = StallM;
end end
//counter #(STEPBITS+1) stepcnt(clk, cntrst, cnten, step);
endmodule endmodule
/* verilator lint_on UNOPTFLAT */ /* verilator lint_on UNOPTFLAT */