fma passing multiply vectors

This commit is contained in:
David Harris 2022-02-27 04:36:01 +00:00
parent 3293ebc0c0
commit d917cc1379
5 changed files with 65 additions and 107 deletions

View File

@ -1,10 +1,19 @@
TARGET ?= fma
# Makefile
# for some reason, softfloat.a needs to be symlinked to the local directory. -L isn't working
$(TARGET): $(TARGET).c Makefile
gcc -O2 -o $(TARGET) $(TARGET).c softfloat.a \
-I../../../addins/SoftFloat-3e/source/include \
-L../../../addins/SoftFloat-3e/build/Linux-x86_64-GCC
CC = gcc
CFLAGS = -O3
LIBS = -lm
LFLAGS = -L.
IFLAGS = -I../../../addins/SoftFloat-3e/source/include/
LIBS = ../../../addins/SoftFloat-3e/build/Linux-x86_64-GCC/softfloat.a
SRCS = $(wildcard *.c)
PROGS = $(patsubst %.c,%,$(SRCS))
all: $(PROGS)
%: %.c
$(CC) $(CFLAGS) $(IFLAGS) $(LFLAGS) -o $@ $< $(LIBS)
clean:
rm $(TARGET)
rm -f $(PROGS)

View File

@ -1,47 +0,0 @@
#include <stdio.h>
#include <stdint.h>
#include "softfloat.h"
#include "softfloat_types.h"
int float_rounding_mode = 0;
union sp {
unsigned short x[2];
float y;
} X;
int main()
{
uint8_t rounding_mode;
uint8_t exceptions;
uint32_t multiplier, multiplicand, addend, result;
float32_t f_multiplier, f_multiplicand, f_addend, f_result;
multiplier = 0xbf800000;
multiplicand = 0xbf800000;
addend = 0xffaaaaaa;
f_multiplier.v = multiplier;
f_multiplicand.v = multiplicand;
f_addend.v = addend;
softfloat_roundingMode = rounding_mode;
softfloat_exceptionFlags = 0;
softfloat_detectTininess = softfloat_tininess_beforeRounding;
f_result = f32_mulAdd(f_multiplier, f_multiplicand, f_addend);
result = f_result.v;
exceptions = softfloat_exceptionFlags & 0x1f;
printf("%x\n", f_result.v);
// Print out SP number
X.x[1] = (f_result.v & 0xffff0000) >> 16;
X.x[0] = (f_result.v & 0x0000ffff);
printf("Number = %f\n", X.y);
return 0;
}

View File

@ -13,20 +13,25 @@
module fma16(
input logic [15:0] x, y, z,
input logic add, mul, negp, negz,
input logic mul, add, negp, negz,
input logic [1:0] roundmode, // 00: rz, 01: rne, 10: rp, 11: rn
output logic [15:0] result);
logic [10:0] xm, ym, zm;
logic [4:0] xe, ye, ze;
logic xs, ys, zs;
logic zs1; // sign before optional negation
logic ps; // sign of product
logic [4:0] xe, ye, ze;
logic xs, ys, zs;
logic zs1; // sign before optional negation
logic [21:0] pm;
logic [5:0] pe;
logic ps; // sign of product
logic [22:0] rm;
logic [6:0] re;
logic rs;
unpack unpack(x, y, z, xm, ym, zm, xe, ye, ze, xs, ys, zs1); // unpack inputs
signadj signadj(negp, negz, xs, ys, zs1, ps, zs); // handle negations
mult mult(mul, xm, ym, xe, ye, pm, pe); // p = x * y
add add(add, pm, zm, pe, ze, ps, zs, rm, re, rs); // r = z + p
mult m(mul, xm, ym, xe, ye, pm, pe); // p = x * y
add a(add, pm, zm, pe, ze, ps, zs, rm, re, rs); // r = z + p
postproc post(roundmode, rm, re, rs, result); // normalize, round, pack
endmodule
@ -34,13 +39,12 @@ module mult(
input logic mul,
input logic [10:0] xm, ym,
input logic [4:0] xe, ye,
input logic xs, ys,
output logic [21:0] pm,
output logic [5:0] pe);
// only multiply if mul = 1
assign pm = mul ? xm * ym : xm; // multiply mantiassas
assign pe = mul ? xe + ye : xe;
assign pm = mul ? xm * ym : {1'b0, xm, 10'b0}; // multiply mantiassas
assign pe = mul ? xe + ye : {1'b0, xe};
endmodule
module add(
@ -58,15 +62,18 @@ module add(
logic [6:0] are;
logic ars;
/*
alignshift as(pe, ze, zm, zmaligned);
condneg cnp(pm, ps, pmn);
condneg cnz(zm, zs, zmn);
assign
*/
// add or pass product through
assign rm = add ? arm : pm;
assign re = add ? are : pe;
assign rm = add ? arm : {1'b0, pm};
assign re = add ? are : {1'b0, pe};
assign rs = add ? ars : ps;
);
endmodule
module postproc(
input logic [1:0] roundmode,
@ -75,6 +82,33 @@ module postproc(
input logic rs,
output logic [15:0] result);
logic [9:0] uf, uff;
logic [6:0] ue;
logic [6:0] ueb, uebiased;
always_comb
if (rm[21]) begin // normalization right shift by 1 and bump up exponent;
ue = re + 7'b1;
uf = rm[20:11];
end else begin // no normalization shift needed
ue = re;
uf = rm[19:10];
end
// overflow
always_comb begin
ueb = ue-7'd15;
if (ue >= 7'd46) begin // overflow
uebiased = 5'd30;
uff = 10'h3ff;
end else begin
uebiased = ue-7'd15;
uff = uf;
end
end
assign result = {rs, uebiased[4:0], uff};
// add special case handling for zeros, NaN, Infinity
endmodule
@ -107,15 +141,9 @@ module unpacknum(
logic [9:0] f; // fraction without leading 1
logic [4:0] eb; // biased exponent
assign {f, eb, s} = num; // pull bit fields out of floating-point number
assign {s, eb, f} = num; // pull bit fields out of floating-point number
assign m = {1'b1, f}; // prepend leading 1 to fraction
assign e = eb - 15; // remove bias from exponent
assign e = eb; // leave bias in exponent ***
endmodule
// Tests:
// Every permutation for x, y, z of
// mantissa = {1.0, 1.0000000001, 1.1, 1.1111111110, 1.1111111111}
// biased exponent = {1, 2, 14, 15, 16, 21, 29, 30}
// sign = {0, 1}
// special case: [normal, 0, INF, NaN]

View File

@ -1,31 +0,0 @@
#!/usr/bin/python3
# fma16_testgen.py
# David_Harris@hmc.edu 26 February 2022
# Generate test cases for 16-bit FMA
def makeVal(val):
def makeCase(x, y, z, mul, add, msg):
xval = makeVal(x);
yval = makeVal(y);
zval = makeVal(z);
mode = mul*2+add; # convert to hexadecimal code
expected = makeExpected(x, y, z, mul, add);
print(xval,"_", yval, "_", zval, "_", mode, "_", expected, " //", msg);
def makeMulCase(x, y, msg):
makeCase(x, y, "0", 1, 0, msg)
################################
## Main program
################################
# Directed cases
makeMulCase("1", "1", "1 x 1");
# Corner cases
# Random cases

View File

@ -1 +0,0 @@
../../../addins/SoftFloat-3e/build/Linux-x86_64-GCC/softfloat.a