Merge pull request #460 from naichewa/main

removed vestigial logic, added comments, deleted unused signals
This commit is contained in:
David Harris 2023-11-10 05:18:57 -08:00 committed by GitHub
commit d7ced56c60

View File

@ -27,10 +27,8 @@
// Current limitations: Flash read sequencer mode not implemented, dual and quad modes untestable with current test plan.
// Comment on FIFOs: watermark calculations
// Comment all interface and internal signals on the lines they are declared
// Get tabs correct so things line up
// Relook at frame compare/ Delay count logic w/o multibit
// Attempt to move from >= comparisons by initializing in FSM differently
// Parameterize SynchFIFO
// look at ReadIncrement/WriteIncrement delay necessity
/*
@ -56,8 +54,7 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
output logic SPIIntr
);
//SPI registers
//SPI control registers. Refer to SiFive FU540-C000 manual
logic [11:0] SckDiv;
logic [1:0] SckMode;
logic [1:0] ChipSelectID;
@ -65,102 +62,96 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
logic [1:0] ChipSelectMode;
logic [15:0] Delay0, Delay1;
logic [4:0] Format;
logic [8:0] ReceiveData;
logic [8:0] ReceiveDataPlaceholder;
logic [7:0] ReceiveData;
logic [2:0] TransmitWatermark, ReceiveWatermark;
logic [8:0] TransmitData;
logic [1:0] InterruptEnable, InterruptPending;
//bus interface signals
//Bus interface signals
logic [7:0] Entry;
logic Memwrite;
logic [31:0] Din, Dout;
logic TransmitInactive; //High when there is no transmission, used as hardware interlock signal
//FIFO FSM signals
logic TransmitWriteMark, TransmitReadMark, RecieveWriteMark, RecieveReadMark;
//Watermark signals - TransmitReadMark = ip[0], ReceiveWriteMark = ip[1]
logic TransmitWriteMark, TransmitReadMark, RecieveWriteMark, RecieveReadMark;
logic TransmitFIFOWriteFull, TransmitFIFOReadEmpty;
logic TransmitFIFOReadIncrement;
logic TransmitFIFOWriteIncrement;
logic ReceiveFIFOReadIncrement;
logic ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty;
logic [7:0] TransmitFIFOReadData, ReceiveFIFOWriteData;
logic [2:0] TransmitWriteWatermarkLevel, ReceiveReadWatermarkLevel;
logic [7:0] ReceiveShiftRegEndian; //reverses ReceiveShiftReg if Format[2] set (little endian transmission)
logic TransmitFIFOReadEmptyDelay;
logic [7:0] ReceiveShiftRegEndian;
//transmission signals
//Transmission signals
logic sck;
logic [11:0] DivCounter;
logic SCLKenable;
logic [8:0] Delay0Count;
logic [8:0] Delay1Count;
logic Delay0Compare;
logic Delay1Compare;
logic InterCSCompare;
logic [8:0] InterCSCount;
logic InterXFRCompare;
logic [8:0] InterXFRCount;
logic [3:0] ChipSelectInternal;
logic [4:0] FrameCount;
logic [4:0] FrameCompare;
logic [11:0] DivCounter; //counter for sck
logic SCLKenable; //flip flop enable high every sclk edge
logic FrameCompareBoolean;
logic [4:0] ReceivePenultimateFrame;
logic [4:0] ReceivePenultimateFrameCount;
logic ReceivePenultimateFrameBoolean;
logic [4:0] FrameCompareProtocol;
logic ReceiveShiftFull;
logic TransmitShiftEmpty;
logic HoldModeDeassert;
//Delay signals
logic [8:0] ImplicitDelay1; //Adds implicit delay to cs-sck delay counter based on phase
logic [8:0] ImplicitDelay2; //Adds implicit delay to sck-cs delay counter based on phase
logic [8:0] CS_SCKCount; //Counter for cs-sck delay
logic [8:0] SCK_CSCount; //Counter for sck-cs delay
logic [8:0] InterCSCount; //Counter for inter cs delay
logic [8:0] InterXFRCount; //Counter for inter xfr delay
logic CS_SCKCompare; //Boolean comparison signal, high when CS_SCKCount >= cs-sck delay
logic SCK_CSCompare; //Boolean comparison signal, high when SCK_CSCount >= sck-cs delay
logic InterCSCompare; //Boolean comparison signal, high when InterCSCount >= inter cs delay
logic InterXFRCompare; //Boolean comparison signal, high when InterXFRCount >= inter xfr delay
logic ZeroDelayHoldMode; //High when ChipSelectMode is hold and Delay1[15:8] (InterXFR delay) is 0
//Frame counting signals
logic [3:0] FrameCount; //Counter for number of frames in transmission
logic FrameCompare; //Boolean comparison signal, high when FrameCount = Format[7:4]
logic [3:0] ReceivePenultimateFrame; //Frame number - 1
logic [3:0] ReceivePenultimateFrameCount; //Counter
logic ReceivePenultimateFrameBoolean; //High when penultimate frame in transmission has been reached
//state fsm signals
logic Active;
logic Active0;
logic Inactive;
//State fsm signals
logic Active; //High when state is either Active1 or Active0 (during transmission)
logic Active0; //High when state is Active0
//shift reg signals
logic TransmitFIFOWriteIncrementDelay;
logic sckPhaseSelect;
logic [7:0] TransmitShiftReg;
logic [7:0] ReceiveShiftReg;
logic SampleEdge;
logic [7:0] TransmitDataEndian;
logic TransmitShiftRegLoad;
//Shift reg signals
logic ShiftEdge; //Determines which edge of sck to shift from TransmitShiftReg
logic [7:0] TransmitShiftReg; //Transmit shift register
logic [7:0] ReceiveShiftReg; //Receive shift register
logic SampleEdge; //Determines which edge of sck to sample from ReceiveShiftReg
logic [7:0] TransmitDataEndian; //Reverses TransmitData from txFIFO if littleendian, since TransmitReg always shifts MSB
logic TransmitShiftRegLoad; //Determines when to load TransmitShiftReg
logic ReceiveShiftFull; //High when receive shift register is full
logic TransmitShiftEmpty; //High when transmit shift register is empty
logic ShiftIn; //Determines whether to shift from SPIIn or SPIOut (if SPI_LOOPBACK_TEST)
logic [3:0] LeftShiftAmount; //Determines left shift amount to left-align data when little endian
logic [7:0] ASR; //AlignedReceiveShiftReg
//CS signals
logic [3:0] ChipSelectAuto, ChipSelectHold, CSoff;
logic ChipSelectHoldSingle;
logic [3:0] ChipSelectAuto; //Assigns ChipSelect value to selected CS signal based on CS ID
logic [3:0] ChipSelectInternal; //Defines what each ChipSelect signal should be based on transmission status and ChipSelectDef
logic DelayMode; //Determines where to place implicit half cycle delay based on sck phase for CS assertion
logic ReceiveShiftFullDelay;
//Miscellaneous signals delayed/early by 1 PCLK cycle
logic ReceiveShiftFullDelay; //Delays ReceiveShiftFull signal by 1 PCLK cycle
logic TransmitFIFOWriteIncrementDelay; //TransmitFIFOWriteIncrement delayed by 1 PCLK cycle
logic ReceiveShiftFullDelayPCLK; //ReceiveShiftFull delayed by 1 PCLK cycle
logic TransmitFIFOReadEmptyDelay;
logic SCLKenableEarly; //SCLKenable 1 PCLK cycle early, needed for on time register changes when ChipSelectMode is hold and Delay1[15:8] (InterXFR delay) is 0
logic SCLKenableDelay;
logic shiftin;
logic [7:0] ReceiveShiftRegInvert;
logic ZeroDelayHoldMode;
logic TransmitInactive;
logic SCLKenableEarly;
logic ReceiveShiftFullDelayPCLK;
logic [3:0] LeftShiftAmount;
logic [7:0] ASR; // AlignedReceiveShiftReg
logic DelayMode;
logic [3:0] PWChipSelect;
// APB access
//APB access
assign Entry = {PADDR[7:2],2'b00}; // 32-bit word-aligned accesses
assign Memwrite = PWRITE & PENABLE & PSEL; // only write in access phase
assign PREADY = TransmitInactive; // tie PREADY to transmission for hardware interlock
// account for subword read/write circuitry
//Account for subword read/write circuitry
// -- Note SPI registers are 32 bits no matter what; access them with LW SW.
assign Din = PWDATA[31:0];
if (P.XLEN == 64) assign PRDATA = {Dout, Dout};
else assign PRDATA = Dout;
// register access *** clean this up
//Register access
always_ff@(posedge PCLK, negedge PRESETn)
if (~PRESETn) begin
SckDiv <= #1 12'd3;
@ -219,8 +210,8 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
endcase
end
// SPI enable generation, where SCLK = PCLK/(2*(SckDiv + 1))
// generates a high signal at the rising and falling edge of SCLK by counting from 0 to SckDiv
//SPI enable generation, where SCLK = PCLK/(2*(SckDiv + 1))
//Generates a high signal at the rising and falling edge of SCLK by counting from 0 to SckDiv
assign SCLKenable = (DivCounter == SckDiv);
assign SCLKenableEarly = ((DivCounter + 12'b1) == SckDiv);
always_ff @(posedge PCLK, negedge PRESETn)
@ -229,23 +220,24 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
else DivCounter <= DivCounter + 12'b1;
//Boolean logic that tracks frame progression
assign FrameCompare = {1'b0,Format[4:1]};
assign FrameCompareBoolean = (FrameCount < FrameCompare);
assign ReceivePenultimateFrameCount = FrameCount + 5'b00001;
assign ReceivePenultimateFrameBoolean = (ReceivePenultimateFrameCount >= FrameCompare);
assign FrameCompare = (FrameCount < Format[4:1]);
assign ReceivePenultimateFrameBoolean = ((FrameCount + 4'b0001) == Format[4:1]);
// Computing delays
//Computing delays
// When sckmode.pha = 0, an extra half-period delay is implicit in the cs-sck delay, and vice-versa for sck-cs
assign Delay0Compare = SckMode[0] ? (Delay0Count >= ({Delay0[7:0], 1'b0})) : (Delay0Count >= ({Delay0[7:0], 1'b0} + 9'b1));
assign Delay1Compare = SckMode[0] ? (Delay1Count >= (({Delay0[15:8], 1'b0}) + 9'b1)) : (Delay1Count >= ({Delay0[15:8], 1'b0}));
assign ImplicitDelay1 = SckMode[0] ? 9'b0 : 9'b1;
assign ImplicitDelay2 = SckMode[0] ? 9'b1 : 9'b0;
assign CS_SCKCompare = CS_SCKCount >= (({Delay0[7:0], 1'b0}) + ImplicitDelay1);
assign SCK_CSCompare = SCK_CSCount >= (({Delay0[15:8], 1'b0}) + ImplicitDelay2);
assign InterCSCompare = (InterCSCount >= ({Delay1[7:0],1'b0}));
assign InterXFRCompare = (InterXFRCount >= ({Delay1[15:8], 1'b0}));
//calculate when tx/rx shift registers are full/empty
//Calculate when tx/rx shift registers are full/empty
TransmitShiftFSM TransmitShiftFSM_1 (PCLK, PRESETn, TransmitFIFOReadEmpty, ReceivePenultimateFrameBoolean, Active0, TransmitShiftEmpty);
ReceiveShiftFSM ReceiveShiftFSM_1 (PCLK, PRESETn, SCLKenable, ReceivePenultimateFrameBoolean, SampleEdge, SckMode[0], ReceiveShiftFull);
//calculate tx/rx fifo write and recieve increment signals
//Calculate tx/rx fifo write and recieve increment signals
assign TransmitFIFOWriteIncrement = (Memwrite & (Entry == 8'h48) & ~TransmitFIFOWriteFull & TransmitInactive);
always_ff @(posedge PCLK, negedge PRESETn)
@ -256,7 +248,7 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
if (~PRESETn) ReceiveFIFOReadIncrement <= 0;
else ReceiveFIFOReadIncrement <= ((Entry == 8'h4C) & ~ReceiveFIFOReadEmpty & PSEL & ~ReceiveFIFOReadIncrement);
//tx/rx FIFOs
//Tx/Rx FIFOs
SynchFIFO #(3,8) txFIFO(PCLK, 1'b1, SCLKenable, PRESETn, TransmitFIFOWriteIncrementDelay, TransmitShiftEmpty, TransmitData[7:0], TransmitWriteWatermarkLevel, TransmitWatermark[2:0], TransmitFIFOReadData[7:0], TransmitFIFOWriteFull, TransmitFIFOReadEmpty, TransmitWriteMark, TransmitReadMark);
SynchFIFO #(3,8) rxFIFO(PCLK, SCLKenable, 1'b1, PRESETn, ReceiveShiftFullDelay, ReceiveFIFOReadIncrement, ReceiveShiftRegEndian, ReceiveWatermark[2:0], ReceiveReadWatermarkLevel, ReceiveData[7:0], ReceiveFIFOWriteFull, ReceiveFIFOReadEmpty, RecieveWriteMark, RecieveReadMark);
@ -280,36 +272,36 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
always_ff @(posedge PCLK, negedge PRESETn)
if (~PRESETn) begin state <= CS_INACTIVE;
FrameCount <= 5'b0;
FrameCount <= 4'b0;
/* verilator lint_off CASEINCOMPLETE */
end else if (SCLKenable) begin
case (state)
CS_INACTIVE: begin
Delay0Count <= 9'b1;
Delay1Count <= 9'b10;
FrameCount <= 5'b0;
CS_SCKCount <= 9'b1;
SCK_CSCount <= 9'b10;
FrameCount <= 4'b0;
InterCSCount <= 9'b10;
InterXFRCount <= 9'b1;
if ((~TransmitFIFOReadEmpty | ~TransmitShiftEmpty) & ((|(Delay0[7:0])) | ~SckMode[0])) state <= DELAY_0;
else if ((~TransmitFIFOReadEmpty | ~TransmitShiftEmpty)) state <= ACTIVE_0;
end
DELAY_0: begin
Delay0Count <= Delay0Count + 9'b1;
if (Delay0Compare) state <= ACTIVE_0;
CS_SCKCount <= CS_SCKCount + 9'b1;
if (CS_SCKCompare) state <= ACTIVE_0;
end
ACTIVE_0: begin
FrameCount <= FrameCount + 5'b1;
FrameCount <= FrameCount + 4'b1;
state <= ACTIVE_1;
end
ACTIVE_1: begin
InterXFRCount <= 9'b1;
if (FrameCompareBoolean) state <= ACTIVE_0;
if (FrameCompare) state <= ACTIVE_0;
else if ((ChipSelectMode[1:0] == 2'b10) & ~|(Delay1[15:8]) & (~TransmitFIFOReadEmpty)) begin
state <= ACTIVE_0;
Delay0Count <= 9'b1;
Delay1Count <= 9'b10;
FrameCount <= 5'b0;
CS_SCKCount <= 9'b1;
SCK_CSCount <= 9'b10;
FrameCount <= 4'b0;
InterCSCount <= 9'b10;
end
else if (ChipSelectMode[1:0] == 2'b10) state <= INTER_XFR;
@ -317,17 +309,17 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
else state <= DELAY_1;
end
DELAY_1: begin
Delay1Count <= Delay1Count + 9'b1;
if (Delay1Compare) state <= INTER_CS;
SCK_CSCount <= SCK_CSCount + 9'b1;
if (SCK_CSCompare) state <= INTER_CS;
end
INTER_CS: begin
InterCSCount <= InterCSCount + 9'b1;
if (InterCSCompare ) state <= CS_INACTIVE;
end
INTER_XFR: begin
Delay0Count <= 9'b1;
Delay1Count <= 9'b10;
FrameCount <= 5'b0;
CS_SCKCount <= 9'b1;
SCK_CSCount <= 9'b10;
FrameCount <= 4'b0;
InterCSCount <= 9'b10;
InterXFRCount <= InterXFRCount + 9'b1;
if (InterXFRCompare & ~TransmitFIFOReadEmptyDelay) state <= ACTIVE_0;
@ -346,16 +338,15 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
assign ZeroDelayHoldMode = ((ChipSelectMode == 2'b10) & (~|(Delay1[7:4])));
assign TransmitInactive = ((state == INTER_CS) | (state == CS_INACTIVE) | (state == INTER_XFR) | (ReceiveShiftFullDelayPCLK & ZeroDelayHoldMode));
assign Active0 = (state == ACTIVE_0);
assign Inactive = (state == CS_INACTIVE);
// Signal tracks which edge of sck to shift data
//Signal tracks which edge of sck to shift data
always_comb
case(SckMode[1:0])
2'b00: sckPhaseSelect = ~sck & SCLKenable;
2'b01: sckPhaseSelect = (sck & |(FrameCount) & SCLKenable);
2'b10: sckPhaseSelect = sck & SCLKenable;
2'b11: sckPhaseSelect = (~sck & |(FrameCount) & SCLKenable);
default: sckPhaseSelect = sck & SCLKenable;
2'b00: ShiftEdge = ~sck & SCLKenable;
2'b01: ShiftEdge = (sck & |(FrameCount) & SCLKenable);
2'b10: ShiftEdge = sck & SCLKenable;
2'b11: ShiftEdge = (~sck & |(FrameCount) & SCLKenable);
default: ShiftEdge = sck & SCLKenable;
endcase
//Transmit shift register
@ -363,32 +354,31 @@ module spi_apb import cvw::*; #(parameter cvw_t P) (
always_ff @(posedge PCLK, negedge PRESETn)
if(~PRESETn) TransmitShiftReg <= 8'b0;
else if (TransmitShiftRegLoad) TransmitShiftReg <= TransmitDataEndian;
else if (sckPhaseSelect & Active) TransmitShiftReg <= {TransmitShiftReg[6:0], 1'b0};
else if (ShiftEdge & Active) TransmitShiftReg <= {TransmitShiftReg[6:0], 1'b0};
assign SPIOut = TransmitShiftReg[7];
//If in loopback mode, receive shift register is connected directly to module's output pins. Else, connected to SPIIn
//There are no setup/hold time issues because transmit shift register and receive shift register always shift/sample on opposite edges
assign shiftin = P.SPI_LOOPBACK_TEST ? SPIOut : SPIIn;
assign ShiftIn = P.SPI_LOOPBACK_TEST ? SPIOut : SPIIn;
// Receive shift register
//Receive shift register
always_ff @(posedge PCLK, negedge PRESETn)
if(~PRESETn) ReceiveShiftReg <= 8'b0;
else if (SampleEdge & SCLKenable) begin
if (~Active) ReceiveShiftReg <= 8'b0;
else ReceiveShiftReg <= {ReceiveShiftReg[6:0], shiftin};
else ReceiveShiftReg <= {ReceiveShiftReg[6:0], ShiftIn};
end
// Aligns received data and reverses if little-endian
//Aligns received data and reverses if little-endian
assign LeftShiftAmount = 4'h8 - Format[4:1];
assign ASR = ReceiveShiftReg << LeftShiftAmount[2:0];
assign ReceiveShiftRegEndian = Format[0] ? {ASR[0], ASR[1], ASR[2], ASR[3], ASR[4], ASR[5], ASR[6], ASR[7]} : ASR[7:0];
// Interrupt logic: raise interrupt if any enabled interrupts are pending
//Interrupt logic: raise interrupt if any enabled interrupts are pending
assign SPIIntr = |(InterruptPending & InterruptEnable);
// Chip select logic
//Chip select logic
always_comb
case(ChipSelectID[1:0])
2'b00: ChipSelectAuto = {ChipSelectDef[3], ChipSelectDef[2], ChipSelectDef[1], ChipSelectInternal[0]};
@ -409,6 +399,13 @@ module SynchFIFO #(parameter M =3 , N= 8)(
output logic wfull, rempty,
output logic wwatermark, rwatermark);
/* Pointer FIFO using design elements from "Simulation and Synthesis Techniques
for Asynchronous FIFO Design" by Clifford E. Cummings. Namely, M bit read and write pointers
are an extra bit larger than address size to determine full/empty conditions.
Watermark comparisons use 2's complement subtraction between the M-1 bit pointers,
which are also used to address memory
*/
logic [N-1:0] mem[2**M];
logic [M:0] rptr, wptr;
logic [M:0] rptrnext, wptrnext;
@ -416,7 +413,7 @@ module SynchFIFO #(parameter M =3 , N= 8)(
logic wfull_val;
logic [M-1:0] raddr;
logic [M-1:0] waddr;
assign rdata = mem[raddr];
always_ff @(posedge PCLK)
if (winc & ~wfull) mem[waddr] <= wdata;